

2010 Operation & Monitoring Report and Five Year Evaluation

Greiner's Lagoon Ballville Township, Ohio

February 2011

www.erm.com

ERM has 130 offices across the following countries worldwide

Argentina
Australia
Belgium
Brazil
Canada
China
Columbia

Panama
Peru
Poland
Portugal
Puerto Rico
Romania
Russia
Singapore
Southern Africa

New Zealand

Germany Hong Kong Hungary India Indonesia Ireland

France

Spain Sweden Taiwan Thailand

Italy Japan Kazakhstan Korea Malaysia The Netherlands
United Arab Emirates
United Kingdom
United States
Vietnam

Mexico

ERM's Cleveland Office

30775 Bainbridge Road Suite 180 Solon, Ohio 44139 T: 440.542.0750 F: 440.542.0753

.www.erm.com

DATE: 2/23/11 WO NUMBER: 0047810.11 TO: TO: Ms. Susan Tennenbaum Mr. Donald Bruce **Assistant Regional Counsel** US EPA - Region 5 77 W. Jackson Boulevard (SR-6J) US EPA - Region 5 Chicago, IL 60604-3590 77 W. Jackson Boulevard (C-14J) Chicago, IL 60604-3590 (2 copies) WE ARE SENDING YOU: X Attached Under separate cover via: Shop drawings ☐ Prints Samples ☐ Specifications Copy of letter Change order Other) **COPIES** NO. DATE DESCRIPTION 2010 O&M Report and Five Year Review for the 1 Feb. 2011 1 Greiner's Lagoon Superfund Site (Site Id. # 0550) THESE ARE TRANSMITTED AS CHECKED BELOW Approved as submitted Resubmit ___ copies for approval For approval Approved as noted Submit ___ copies for distribution For your use Returned ___ corrected prints As requested Returned for corrections Prints returned after loan to us For review and comment For bids due (other) REMARKS Attached please find the 2010 O&M Report and Five Year Review for your approval. We would like to set up a meeting with you and Ohio EPA to discuss the five year review and to develop a plan moving forward for the Site. Please contact us at your earliest convenience so that we can set up a meeting time. Thank you. SIGNED: COPY TO: File Ghassan Tafla - OEPA, NW District Office (2 Karen Walter, Esq. - The Lubrizol Corporation Sarah B. Gregg, P. Meera Raghuram - The Lubrizol Corporation

Project Manager

Environmental

30775 Bainbridge Road

Solon, Ohio 44139

(440) 542-0753 (fax)

(440) 542-0750

Resources Management

Suite 180

If enclosures are not as noted, kindly notify us at once.

Letter of Transmittal

The Lubrizol Corporation

2010 Operation & Monitoring Report and Five Year Evaluation

Greiner's Lagoon Ballville Township, Ohio

February 2011

ERM Project No. 0047810

Sarah B. Gregg, P.E.

Project Manager

William B. Løzier, P.E. CP

Principal

Environmental Resources Management

30775 Bainbridge Road, Suite 180 Solon, Ohio 44139 (440) 542-0750

www.erm.com

TABLE OF CONTENTS

EXE	CUTIV	TE SUMMARY	. 1
1.0	BAC	CKGROUND HISTORY	3
2.0	YEA.	R FIVE - OPERATION AND MAINTENANCE ACTIVITIES	5
	2.1	SITE INSPECTIONS	5
	2.2	TREE REPLACEMENT	7
	2.3	SITE DRAINAGE	7
3.0	YEA	R FIVE - GROUNDWATER SAMPLING	8
	3.1	FIELD PROCEDURES	8
	3.2	GROUNDWATER SAMPLE RESULTS	10
4.0	CUN	MULATIVE FIVE YEAR REVIEW	14
	4.1	SITE INSPECTIONS	15
	4.2	ANALYTICAL SAMPLING	16
	4.3	STATISTICAL ANALYSES	18
÷	4.4	EVALUATION OF CURRENT RISK	19
5.0	CON	ICLUSIONS	22

LIST OF FIGURES

- 1 Site Location Map
- 2 Site Plan
- 3 Potentiometric Map November 2010-Bedrock Aquifer
- 4 Potentiometric Map November 2010-Shallow Zone

LIST OF TABLES

- 1 Historical Groundwater Elevations
- 2 Groundwater Data November 2010
- 3 Historic Detection Summary Table Deep Wells
- 4 Historic Detection Summary Table Perched On-site Wells
- 5 Historic Detection Summary Table Perched Off-site Wells

LIST OF APPENDICES

- A 2010 Site Inspection Logs
- B Site Photographs
- C Field Sampling Forms
- D Laboratory Analytical Data Sheets
- E Mann-Kendall Test Description and Output
- F Risk Assessment Calculation Tables

EXECUTIVE SUMMARY

This report contains the 2010 Annual Operating Report and Five Year Review for the Greiner's Lagoon Superfund Site (Site Id. # 0550) located in Ballville Township, Ohio (herein referred to as "Site"). The remedial action was completed in October 2005. The final inspection of the Site was conducted by Tom Williams of the United States Environmental Protection Agency (USEPA) and Ghassan Tafla of the Ohio Environmental Protection Agency (OEPA) on May 4, 2006. The Notice of Completion was issued by the USEPA on October 2, 2006. Normal maintenance was conducted at the site according to the requirements of the Operation and Maintenance (O&M) Manual approved by the USEPA (approved via e-mail on September 29, 2006 by Thomas Williams).

ERM has subcontracted with Cutter–Green LLC located in Fremont, Ohio to assist with routine O&M activities at the Site since the installment of the of the phytoremediation cap. Beginning in April 2007, the Site has been inspected at least once per quarter by either ERM personnel or ERM subcontractors. The key maintenance issues for the Site have been associated with minor erosion control and repair, application of fertilizer and periodic watering, inspection and limited replacement of damaged trees, and repair of animal burrows.

In addition to the routine O&M at the Site, annual groundwater sampling has been conducted by ERM from 2006 through 2010. Sampling has been conducted in accordance with the USEPA approved Sampling and Analysis Plan and the Quality Assurance Project Plan.

This report summarizes the findings for the 2010 calendar year (i.e. fifth year of performance monitoring) and provides a collective review and analysis of the first five years of data collection at the Site.

The objective of the remedial action (RA) as stated in the Statement of Work (SOW), Final Removal Design/ Removal Action Work Plan (Work Plan), and O&M Manual is to minimize the potential for human exposure to constituents of concern at levels that would result in calculated risks above USEPA threshold values for the Site. As shown herein, the Site remains protective of risk and is therefore adhering to the RA objective. The institutional and engineering controls currently in place are necessary and sufficient.

The performance criteria for the RA as stated in the SOW, Work Plan, and O&M Manual are to confirm that there are no significant changes in the ground water quality and to determine if a significant reduction in the volume of leachate releases (seepage breakouts) has occurred. Based on the performance standards, the remedial action at the Site continues to be effective. The grass cover and poplar trees are surviving and flourishing. There is no significant change in groundwater quality as the Site continues to meet risked based criteria. Lastly, during the five year monitoring period, no seepage breakouts have been observed.

Based on the five years of monitoring data, the phytoremediation cap is performing as it was designed and is meeting the stated remedial objectives and performance criteria. No additional action or modification to the phytoremediation system is therefore recommended.

The Site is located south of Fremont, Ohio on Township Road 181 about ½-mile west of Tiffin Road (CR 53) in Ballville Township, Sandusky County (Figure 1). The Site was originally developed in 1954 and contained four lagoons that were used to store waste oil from nearby industry. During the course of the Site operations by various owners, a number of community complaints and legal actions were undertaken due to odors and releases from the lagoons. From 1981 to 1988, the USEPA implemented site removal actions that included lagoon dike reinforcement, surface oil removal, liquids treatment and discharge, sludge solidification, lagoon backfilling, and placement of a soil cover over the filled lagoons. Between 1982 and 1985, OEPA coordinated the delivery of sand and gravel washings from the processing of sugar beets and placement of the material in the lagoons to solidify the material in the open lagoons.

In 1991 USEPA and Lubrizol, a potentially responsible party (and not the property owner), entered into an AOC to produce an Engineering Evaluation/Cost Analysis (EE/CA). The EE/CA included site characterization, a streamlined risk evaluation and preliminary ecological risk assessment, identification of removal action objectives, identification and evaluation of removal action alternatives, and recommendation of a non-time critical removal action for the site. Based on the results of the EE/CA, site investigations, and risk assessment, phytoremediation was selected as the preferred removal action for the Site. Phytoremediation was recommended to be implemented at the Site using a tall grass cover and a groundwater tree barrier. The area covered at the Site was 3.2 acres, which has been fenced to control access to the site and to help ensure the long-term integrity of the phytoremediation system. All existing vegetation was cleared from the former lagoon areas. The northern portion of the Site was amended with soil to improve subsoil quality in the soft areas that had formerly been filled by USEPA and OEPA. One foot of topsoil was placed over the regraded soils to help promote rapid root development and to minimize exposure to bare areas. The design of the phytoremediation cover included surface water management through the use of drainage ditches and site grading to reduce water infiltration into the effected areas. Construction of the phytoremediation cover was completed in 2005.

Following completion of the Remedial Action (RA), an Operation and Maintenance (O&M) Manual was developed for the Site in July 2006. The O&M Manual describes the activities designed to maintain the remedy implemented for the Site. The O&M measures and activities are required to maintain the effectiveness of the RA and ensure that the remedy remains protective of human health and the environment. The RA is intended to provide for short- and long-term minimization of the potential for human exposure to constituents of concern at levels that would result in calculated risks above USEPA threshold values for the Site.

As outlined in the O&M Manual, the performance of a phytoremediation system must be assessed during operation to ensure that the goals for the system are met. The monitoring required is different from that used for conventional remediation systems and requires measuring fewer parameters. System monitoring as outlined in the O&M Manual includes visual inspections and groundwater sampling. The performance of the phytoremediation system is measured against the performance standards outlined in the SOW in the AOC.

Per the O&M Manual, groundwater monitoring was conducted annually for five years to monitor site specific groundwater parameters (i.e., to confirm there are no significant changes in the ground water quality). Yearly monitoring has occurred at the Site from 2006 through 2010. Yearly reports were submitted in January of the years 2007 through 2010 that summarized the previous year's performance monitoring. This report presents the findings of the fifth year of performance monitoring as well as an analysis of the initial five years worth of monitoring.

The remainder of the report is organized as follows:

• TAB 1

- Section 2 Results of the Maintenance Activities that were performed in the fifth year of performance monitoring (2010)
- Section 3 Results of the Analytical Groundwater Sampling that was conducted in the fifth year of performance monitoring (2010)

TAB 2

 Section 4 - A cumulative five year review and analysis of the data collected at the Site, including an overview of the Site performance and an evaluation of the performance criteria

2.0 YEAR FIVE - OPERATION AND MAINTENANCE ACTIVITIES

Maintenance activities at the site in 2010 included cutting of grass and animal burrow repair. Following the winter of 2009-2010, normal maintenance activities commenced in the summer of 2010, when the mowing activities were needed. To ensure normal operation and report any required maintenance, Site inspections were performed quarterly by ERM personnel. The integrity of the phytoremediation cap, vitality of the trees, and condition of the fence were noted.

Ecolotree, Inc. provided the poplar and willow trees used for the phytoremediation buffer in 2006 and during installation divided the site into three basic zones: Zone A, Zone B, and Zone C. For consistency, ERM has labeled the Site Plan (see Figure 2) with these zone references that are further described below.

- Zone A is located in the northern portion of the Site and includes the northern top of the slope, the north and west gates, the culvert inlet and outlet, and the tile inlet.
- Zone B is located in the central portion of the Site and includes the southern half of the top of the slope and ends approximately at the southern toe of the slope.
- Zone C is located at the southernmost portion of the Site and is generally referred to as the timber area in the Cutter-Green descriptions in previous inspection logs.

ERM subcontracted with Cutter-Green LLC located in Fremont, Ohio to assist with routine O&M activities at the Site.

2.1 SITE INSPECTIONS

In accordance with the Site O&M Manual, site inspections were performed quarterly for years two through five following completion of the remedy. The results of the site inspections were included in the 2006 through 2009 annual O&M Reports. A summary of the site inspections and maintenance conducted for the 2010 calendar year (year five) is provided below.

1st Quarter 2010 (Winter)

An ERM employee was on-Site on January 29, 2010 to conduct the 1st Quarter 2010 Site inspection. At this time, the drums containing the purge water from the 2009 annual sampling were also removed for proper disposal by PSC of Toledo, Ohio. The ground was lightly covered with snow and the trees and grass were dormant for the winter. The previously identified animal burrows had been repaired and there were no signs of new animal burrows.

2nd Quarter 2010 (Spring)

ERM conducted the 2nd Quarter 2010 Site inspection on May 21, 2010. The ground was saturated due to a recent rain event. The water retention areas appeared to be working as designed. Animal burrows were present, but they appeared to be inactive. Cutter Green had been on-site to cut the grass and as a result of the Site inspection they were instructed to repair the animal burrows.

3rd Quarter 2010 (Summer)

The Greiner's Lagoon third quarter site inspection was conducted on September 7, 2010. The ground was dry and some small patches of dead grass were observed, as is typical for this dry time of the year. New animal burrows were also observed. Cutter Green was instructed to repair the animal burrows.

4th Quarter 2010 (Fall)

The Greiner's Lagoon fourth quarter site inspection was conducted on November 15, 2010 in conjunction with the annual sampling event. The ground surface was moist and the plant growth at the site was typical for the fall season. Small animal burrows were still present and Cutter Green made repairs and removed the groundhogs from the Site, following this Site inspection.

Copies of the inspection reports are included in Appendix A. A photo log compiling the photos taken during the 2010 calendar year site inspections is also included in Appendix B. No leachate breakouts or evidence of leachate breakouts were observed during the quarterly Site inspections by ERM, during the annual groundwater sampling, or during the maintenance activities conducted by Cutter Green throughout the growing season.

2.2 TREE REPLACEMENT

The trees around Greiner's Lagoon were inspected during the 2010 growing season and it has been determined that the majority of the trees are flourishing and healthy. Based on the positive survival rate of the trees observed during 2010, tree replacement activities were not needed at the Site. At this time, it appears that the maintenance activities have been successful for the 2010 calendar year.

2.3 SITE DRAINAGE

The storm water drainage system is designed to retain excess storm water and discharge to the off-site field tile at a controlled rate so that the downstream drainage (field tile and ditches) are not flooded; thereby allowing adjacent farm fields to drain into the area drainage system.

During the 2010 calendar year, standing water was observed in the drainage swale after large rain events, as designed. Re-grading in the swale that occurred in 2006 has reduced the storm water retention time to an approximate two (2) day maximum in the wettest part of the drainage swale.

3.0 YEAR FIVE - GROUNDWATER SAMPLING

As required by the AOC, both the USEPA and the Ohio EPA were notified on October 25, 2010 that groundwater sampling was scheduled to be conducted starting November 15, 2010.

Sampling activities for the 2010 annual sampling event at the Site began on November 15th, 2010 and finished on November 19th, 2010. Groundwater levels were recorded on November 15th in preparation for the actual sampling event and were also recorded on the field sampling forms at the time of sampling. Field Sampling forms are enclosed in Appendix C.

3.1 FIELD PROCEDURES

3.1.1 Initial Static Water Levels

Prior to the collection of any water samples, the static water level in each well was measured with an interface probe to detect any immiscible layers within each well. It is noted that none of the wells had detections of immiscible layers during the November 2010 sampling event. After the water level was determined for each well, the interface probe was rinsed thoroughly with DI water. The static water levels and total well depths were then entered on the field form for each well. Static water levels were used to determine well volumes. These groundwater measurements were also compared with historical groundwater measurements (Table 1).

During the 2010 sampling, the bedrock aquifer was detected to be flowing in a northwest direction at a gradient of 0.0002 ft/ft. The potentiometric surface for the deep zone (bedrock aquifer) is shown on Figure 3. The general westward flow (inclusive of southwest and northwest) is consistent with the expected regional flow to the Sandusky River, located approximately ½ mile west of the Site.

The groundwater flow direction in the shallow zone in November 2010 was toward the west which is consistent with the post-remediation data collected since 2006. The gradient is about 0.008 ft/ft and this flow is toward the mature trees to the west of the site and the Sandusky River, about ½ mile west and southwest. The potentiometric surface for the shallow zone is shown on Figure 4.

3.1.2 Well Purging

Once the water level and total well depth was measured in a well, the well volume was calculated. Each well was then purged of three volumes or more using a disposable polyethylene weighted bailer. During the purging of the well, measurements of the following parameters were recorded to determine stabilization of the well water:

- time;
- volume purged;
- pH;
- conductivity;
- temperature; and
- turbidity

The instruments used for the water quality parameter measurements were calibrated daily before sampling activities began. These calibrations and field parameter measurements can be found on the respective field forms enclosed as Appendix C.

Purge water from all the wells was collected in properly labeled 55-gallon drums, sealed, and stored on-site. The on-site storage is located within the secure portion of the site within the fence. The drums were approved for disposal by PSC of Toledo, Ohio as non-hazardous waste water and were picked up for off-site disposal on January 20, 2011.

3.1.3 Sample Collection

Once three well volumes were purged from a well, a decontaminated non-dedicated bladder pump was lowered into the well. The bladder pump was then used at each well to purge one additional gallon before water quality parameter readings were determined. Low flow samples were taken with the bladder pump only after three consecutive, stable readings of all water quality parameters (within 10%) were achieved. Groundwater was collected from the sandpack interval portion of each well. The depths of the pump placement in each well are recorded on the respective field forms (refer to Appendix C).

Once sampling activities were completed, the bladder pump was field stripped, decontaminated by a double wash rinse of distilled water and Alconox, and reassembled before sampling the next well. New polyethylene tubing was used to sample each well.

The decontamination rinsates were collected along with the purge water and contained in 55-gallon drums.

The following samples were collected at each well:

- (3) 40mL glass vials with hydrochloric acid (HCL) preservative for Volatile Organic Compounds (VOCs) method 8260B;
- (2) 1L glass amber bottles with no preservative for Semi-volatile organic Compounds (SVOCs) method 8270C; and
- (2) 0.5L plastic containers with nitric acid (HNO₃) preservative for Priority Pollutant Metals. One of the two sample containers for metals was filtered in the field using a 0.45 μm filter prior to acidification while the other was unfiltered.

Once the samples were collected, they were immediately sealed and placed into insulated coolers with wet ice. Before shipping, the coolers contained a properly signed chain of custody form. A custody seal was also affixed to the cooler before being taped and shipped to Test America Laboratories in North Canton, Ohio.

Duplicate samples were taken at MW-13 and MW-1. Equipment Blanks were collected on November 17, 2010 between the sample collection from wells MW-12 and MW-1 and on November 18, 2010 after the MS/DS sample collection from well MW-3 and sampling well MW-6. An MS/MSD sample was taken for the lab at MW-3.

3.2 GROUNDWATER SAMPLE RESULTS

The November 2010 sampling event provided the fifth round of data collected since the installation of the phytoremediation system. Previous sampling data was collected in November from 2006 through 2009 and have been summarized in previous annual reports.

Groundwater sample results for the November 2010 sampling event are presented in Table 2. The analytical lab report used to create Table 2 is also enclosed in Appendix D. Tables 3 through 5 present a historic detection summary of the groundwater sampling from 1998 through 2010. Detected constituents in Tables 3 through 5 are compared to their corresponding Exposure Point Concentrations (EPCs) per the EE/CA and Maximum Concentration Limits (MCLs) per the USEPA.

Furthermore, it is noted that some constituents were marked with qualifiers by Test America, indicating that the sample results did not meet the quality assurance/quality control standards, which included constituents that were also detected in the method blank or were detected between the method detection limit (MDL) and the reporting limit (RL). These detections are labeled with a "B" or a "J" qualifier, respectively, in both the lab reports and data tables.

According to Test America, all target analytes in the Method Blank must be below the RL or the associated sample(s) must be ND with the exception of common laboratory contaminants. Furthermore, the samples that contain results between the MDL and the RL ("J" flagged) have the possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

The samples that contained concentrations of target analytes at a reportable level in the associated Method Blank(s) were flagged with "B" and are therefore considered lab contaminants and are not treated as a positive detection. The samples that contain results between the MDL and the RL were flagged with "J" and have a possibility of false positive or misidentification at these quantitation levels, according to Test America. Therefore "J" flagged constituents are considered estimated values rather than valid detections and have been treated as such in the discussions herein for the 2010 sampling event.

3.2.1 Deep Groundwater

Deep groundwater associated with the Site was evaluated by sampling and testing groundwater samples from wells MW-1 through MW-3. Groundwater samples were analyzed for VOCs, SVOCs, and priority pollutant metals. None of the groundwater samples collected from the deep groundwater wells had valid detections of VOCs, SVOCs, or priority pollutant metals above lab detection limits during the 2010 sampling event.

3.2.2 On-Site Perched Shallow Groundwater

On-site perched shallow groundwater associated with the Site was evaluated by sampling and testing groundwater samples from wells MW-4 through MW-8. Groundwater samples were analyzed for VOCs,

SVOCs, and priority pollutant metals. The following constituents were detected during the 2010 sampling event:

<u>VOCs</u>	<u>Metals</u>
• Acetone	• Antimony
• Benzene	• Arsenic
 4-methyl-2-pentanone (MIBK) 	• Nickel
• Toluene	• Selenium

No SVOCs were detected above lab detection limits.

Of the constituents listed above only two metals, arsenic and antimony, and one VOC, benzene, were detected above their corresponding MCL. Antimony is the only constituent that was also detected above its corresponding EPC in one well.

3.2.3 Off-Site Perched Shallow Groundwater

Off-site perched shallow groundwater associated with the Site was evaluated by sampling and testing groundwater samples from wells MW-9 through MW-15. Groundwater samples were analyzed for VOCs, SVOCs, and priority pollutant metals. The following constituents were detected during the 2010 sampling event:

<u>VOCs</u>	<u>Metals</u>
• Acetone	• Arsenic
	 Nickel

No SVOCs were detected above lab detection limits.

Of the constituents listed above only arsenic was detected above its corresponding MCL. Arsenic was also detected above its corresponding EPC in one well (MW-9).

4.0 CUMULATIVE FIVE YEAR REVIEW

As stated in the SOW and the Work Plan, the RA objective is as follows:

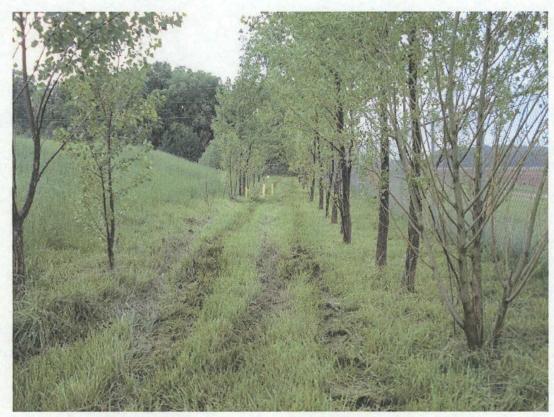
 "To mitigate the risks to human health and the environment as defined in the EE/CA. In accordance with these documents the RA will provide for short- and long-term minimization of the potential for human exposure to constituents of concern at levels that would result in calculated risks above USEPA threshold values for the Site."

Furthermore, the Performance Criteria for the Site as stated in the Performance Standards section of the O&M Manual is as follows:

- "Ground water monitoring will be conducted annually for five years to monitor site specific ground water parameters (i.e., to confirm there are no significant changes in the ground water quality)."
- "Five years after construction of the phytoremediation remedy, USEPA, in consultation with OEPA, will determine whether a significant reduction in the volume of leachate releases (seepage breakouts) has occurred. If no significant reduction in the volume of and contaminant concentrations in leachate releases (seepage breakouts) have occurred, then USEPA, in consultation with OEPA, will evaluate whether additional response actions are necessary."

The O&M Manual continues to explain that "this evaluation will include, but may not be limited to, collection of data, a human health risk assessment, and cost projections for any potential future remediation. Furthermore, if the grass cover, cotton or hybrid poplar trees fail to survive and flourish; additional flora must be installed that is capable of surviving and flourishing. Monitoring of the removal action to evaluate its effectiveness will be conducted during the first five years. If after five years, the monitoring shows that the technology is not effective, the alternative will be enhanced, supplemented or replaced."

Calendar year 2010 marked the fifth year of operation and maintenance activities at the Site since the installation of the phytoremediation system. In accordance with the O&M Plan for the Site and as indicated in previous annual reports, a review of all of the data collected in the first five years of


monitoring at the Site has been conducted. The purpose of this data analysis is to determine compliance with the performance criteria and the RA objective. A discussion of the data analysis is further described below.

4.1 SITE INSPECTIONS

Quarterly Site inspections have occurred at the Site from January 2006 through December 2010.

Photograph 1: Tree Planting Activities in November 2005, looking Northeast, along northern end of the Site

Photograph 2: May 2010, looking West at the Northern portion of the Site

The photos shown above provide a comparison of the growth of the trees since they were planted in 2005. The grass cover and the trees have been successfully planted and are flourishing.

Based on the observations made during the quarterly inspections, no seepage breakouts have occurred at the Site since the implementation of the RA and the remedy is adhering to the performance standards outlined in Section 4.3 of the O&M Plan.

4.2 ANALYTICAL SAMPLING

Ten target VOCs, nineteen target SVOCs, and numerous low level metals were detected in the groundwater at the Site during the pre-remediation sampling in 1998. As described in Section 3.2 of this report, concentrations of these constituents have declined since installation of the phytoremediation cap and few of these constituents were detected above lab detections during the most recent round of sampling. In fact, only 4 VOCs and 4 metals were even detected above lab detection limits in the shallow groundwater on or off- Site. Furthermore, no VOCs, SVOCs, or

metals were detected above lab detection limits in the deep groundwater during the most recent round of sampling.

As described in the O&M Manual, the RA was intended to provide for short- and long-term minimization of the potential for human exposure to constituents of concern at levels that would result in calculated risks above USEPA threshold values for the Site. The yearly analytical sampling was conducted in order to monitor the short-term effectiveness of the RA. In order to determine the long-term effectiveness of the RA, further analyses were completed as further described herein.

Prior to the remedy installation, the shallow monitoring wells indicated that the localized flow direction of the shallow saturated zone was generally toward the northwest, west, and southwest, in a radial direction from the eastern property boundary as indicated in the EE/CA by the data collected in July 1996, November 1998, January 1999, and April 1999. Following the installation of the RA, the water levels in the shallow zone monitor wells have all dropped from November 2006 to November 2010. Changes in water depths from 2006 to 2010 have ranged from approximately 1.5 feet deeper (MW-5) to 6.25 feet deeper (MW-8). The water level change may be the result of increased evapotranspiration at the Site. However overall, the direction of the groundwater flow has remained generally to the west since the remediation occurred in 2006.

Based on current shallow groundwater conditions, the off-site wells are categorized as follows in relation to the Site:

Upgradient wells: MW-13, MW-14, and MW-15

• Downgradient Wells: MW-11 and MW-12

Cross Gradient Wells: MW-9 and MW-10

The remedy is considered to be effective if a) there are no significant changes in groundwater quality and b) the remedy remains protective of risks. Statistical trend analysis was performed to evaluate groundwater quality as discussed below. Risks on-site are effectively managed through existing controls such as fencing and a deed restriction. In order to evaluate risks, an updated risk assessment of the shallow groundwater zone was performed, which is further discussed in the subsequent sections.

4.3 STATISTICAL ANALYSES

As proposed in the 2009 annual report, statistical analyses have been conducted of the historic analytical data that has been collected at the Site, including pre-remediation data from 1998 and post-remediation data from 2006 through 2010. As stated in Section 4.3 of the O&M Manual, the performance criteria for groundwater monitoring is to confirm that there are no significant changes in the groundwater quality. The methodology and results of the statistical analysis is discussed below.

For trend analysis purposes, ERM focused their statistical analyses on the target constituents identified during the 1998 sampling round (preremediation), which were VOCs, SVOCs, and metals. Based on the data collected, the following selection criterion was used for constituent trending:

- Constituents labeled with a "B" flag were not used for trending as they were detected in the method blank and do not qualify as a valid detection.
- All other analytical results of VOCs, SVOCs, and metals including estimated values that were denoted with a qualifier ("J" flag) were considered for statistical purposes. However, it is noted that "J" flag values are often below detection limits and can falsely skew a trend to appear to be increasing when there are numerous nondetects for a specific parameter. Therefore, additional selection criteria were established (see next bullet).
- Trend analyses were completed for any constituent with an analytical result from at least 50% of the sampling events (i.e. detected during three sampling events) from 1998 through 2010 with at least one of those detections in exceedance of its corresponding current MCL value.

The trends in concentrations-over-time at the monitoring wells were evaluated using the Mann-Kendall statistical test. The Mann-Kendall test is a non-parametric test that can be used to assess whether concentrations exhibit increasing or decreasing trends over time to a specified level of confidence. The Mann-Kendall test was performed using Monitoring and Remediation Optimization System (MAROS) Software Version 2.1, which was developed for the Air Force Center for Environmental Excellence (Nov. 2004). A separate trend test is performed on each well for each contaminant and requires a minimum of four sampling events. The

results of this test are reported as Concentration Trend, which is reported as Decreasing, Probably Decreasing, No Trend, Stable, Increasing, or Probably Increasing, based on the Mann-Kendall statistic and the Confidence in Trend. For example, if the Mann-Kendall statistic is negative, a decreasing trend is reported if Confidence in Trend is greater than 95% and a probably decreasing trend if the confidence is between 90 and 95%. Calculations of the Mann-Kendall analyses and further explanation of the trend test are provided in Appendix E.

Based upon the selected criteria described above, the only constituents that warranted a Mann-Kendall analysis were benzene, antimony, and arsenic in select wells. Of all the constituents that were analyzed using the Mann-Kendall analysis, only antimony in MW-5 and arsenic in MW-9 have shown an increasing trend in shallow groundwater. No trending was conducted in the deep groundwater zone as no constituents were identified meeting the selected criteria.

As a result of the increasing trends detected for antimony in MW-5 and arsenic in MW-9, the corresponding downgradient wells (MW-11 and MW-12) were examined for detections of these constituents. There were no detections of antimony during any of the sampling events in the downgradient wells; therefore, no additional trend analyses were completed for antimony. Similarly, arsenic was not detected in downgradient well MW-12; however, there were two detections of arsenic in MW-11 and therefore, arsenic trend analyses in MW-11 were completed using the Mann-Kendall trend analysis, even though it did not meet the selection criteria listed above (50% constituent detection). Further discussion on MW-11 is included in Section 4.4 below.

4.4 EVALUATION OF CURRENT RISK

Based on the findings of the Statistical analyses, ERM determined that overall trends of constituents observed in the groundwater at the Site have remained generally stable and do not show overall signs of increasing concentrations. Only two increasing trends for select metals were observed in two shallow groundwater wells:

- Antimony in on-Site well MW-5
- Arsenic in off-site well MW-9

MW-5 is an on-site well and exposure to this well has been limited through effective and necessary institutional controls. Further, there are no valid detections of antimony in the downgradient wells.

Based on the current groundwater flow conditions, MW-9 is an off-site, side-gradient well. While this well has a calculated increasing trend for arsenic, the wells located down-gradient of the on-site wells have not shown an increase in arsenic concentrations. MW-11 was calculated to have no trend for arsenic and no valid detection of arsenic have occurred in MW-12 throughout the sampling history of the Site.

However, to evaluate if the Site was still protective of risk and to quantify whether these changes in groundwater quality are significant, ERM performed a limited updated risk evaluation for the shallow on-site and off-site groundwater. Risks were evaluated for potential exposure via dermal and inhalation pathways for future construction workers. Using the same assumptions that were stated in the EE/CA, total noncarcinogenic and carcinogenic risks were evaluated for these exposure pathways, which were determined to be the only complete exposure pathways related to the Site. In addition, it is noted that estimated "J" qualified data was used in this updated risk evaluation to remain consistent with the EE/CA. Data labeled with a "B" qualifier was not used.

The Streamlined Risk Evaluation that was performed and documented in Section 5 of the EE/CA was conducted in 2001 with the most recent risk assessment guidelines and procedures at that time. The updated risk evaluation that was conducted on the 2010 analytical data was performed based on the most recent standards and procedures as of the date of this report. Refer to Appendix F for more details on the assumptions and references used in this updated risk evaluation.

4.2.1 Carcinogenic Risks

Based on the 2010 sampling data, the following carcinogenic risks have been calculated for the on-site perched groundwater. The estimated cancer risk for dermal exposure with on-site perched groundwater by the construction worker is 1.9×10^{-8} . On-site perched groundwater estimated a cancer risk for inhalation risks for the construction worker is 7.6×10^{-10} .

Based on the 2010 sampling data, the following carcinogenic risks have also been calculated for the off-site perched groundwater. The estimated cancer risk for dermal exposure with off-site perched groundwater by the

construction worker is 6.9×10^{-9} . No carcinogenic constituents for inhalation (i.e. VOCs) were detected in the off-site perched groundwater, thus no cancer risk for inhalation was calculated. This is consistent with the 2001 EE/CA.

The resultant cancer risks for the construction worker potentially exposed to on-site and off-site perched groundwater is 2.0×10^{-8} and 6.9×10^{-9} , respectively. These estimated risks for the construction worker are well below the acceptable cancer risk range of 1×10^{-4} to 1×10^{-6} . In 2001, the major contributors to on-site perched groundwater cancer risks were benzene and bis(2-ethylhexyl) phthalate and in 2010 the major contributors were antimony and benzene. In 2001 and 2010, the major contributor to off-site perched groundwater cancer risks was arsenic in the perched groundwater.

4.2.2 Noncarcinogenic Risks

Based on the 2010 sampling data, the following noncarcinogenic risks have been calculated for the on-site perched groundwater. The estimated noncarcinogenic risk for dermal exposure with on-site perched groundwater by the construction worker is 5.4×10^{-3} . On-site perched groundwater estimated a noncarcinogenic risk for inhalation risks for the construction worker is 3.9×10^{-5} .

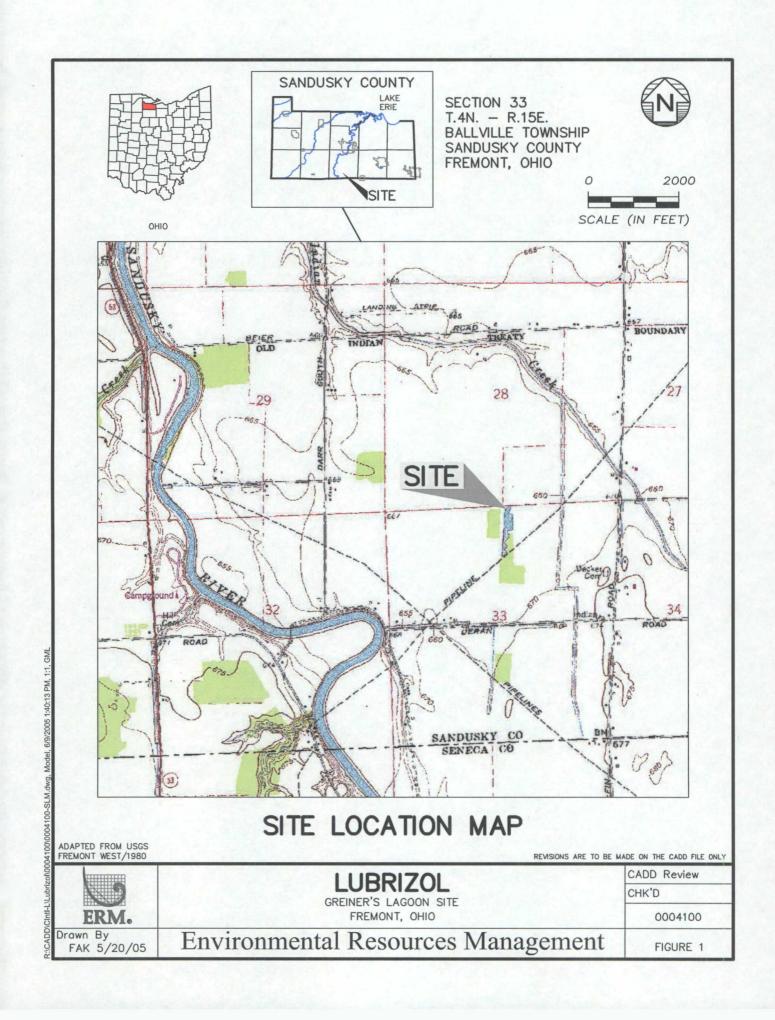
Based on the 2010 sampling data, the following noncarcinogenic risks have also been calculated for the off-site perched groundwater. The estimated noncarcinogenic risk for dermal exposure with off-site perched groundwater by the construction worker is 1.1×10^{-3} . Off-site perched groundwater estimated a noncarcinogenic risk for inhalation risks for the construction worker is 3.6×10^{-8} .

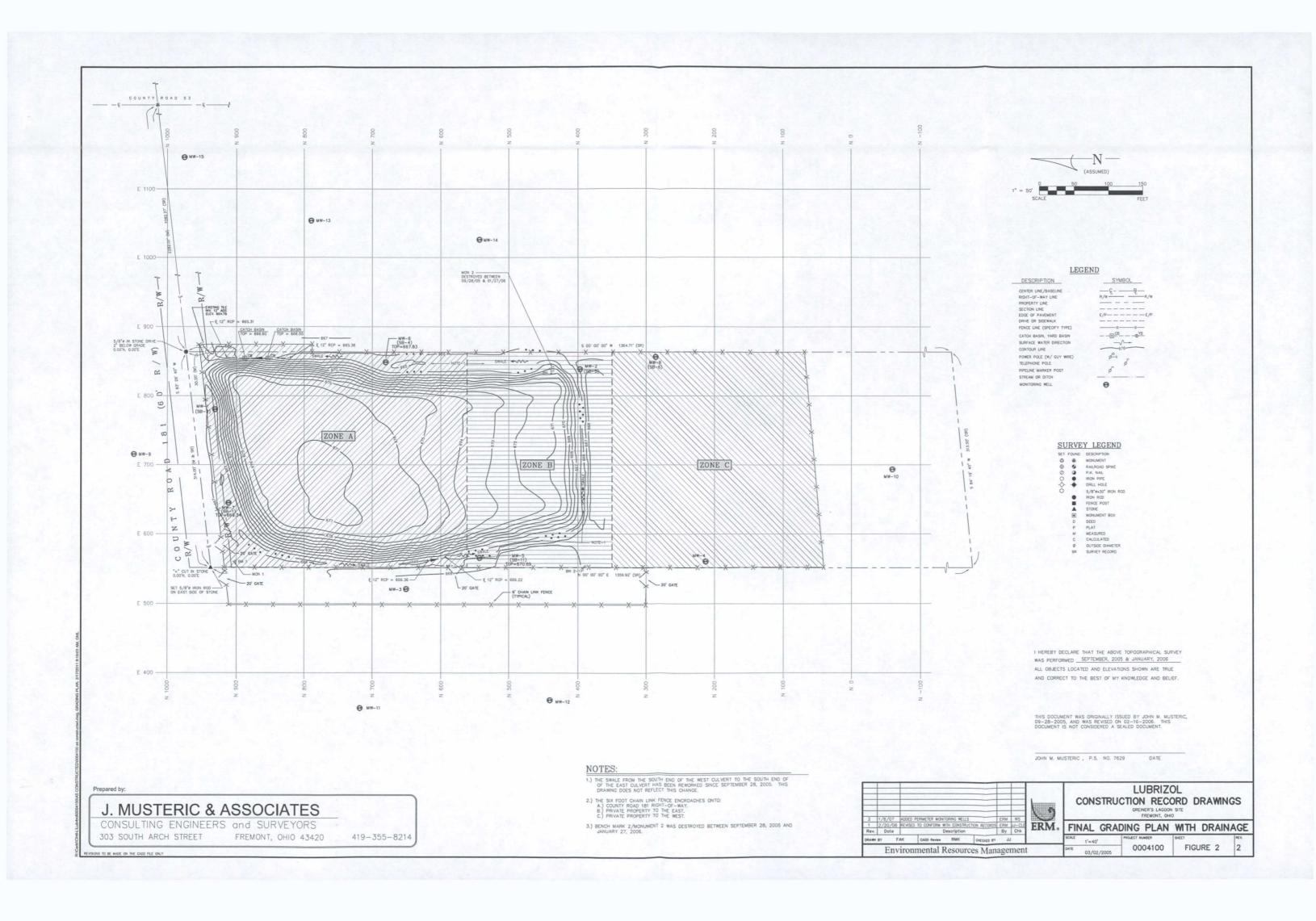
The 2010 resultant noncarcinogenic risks for the construction worker potentially exposed to on-site and off-site perched groundwater are 5.4×10^{-3} and 1.1×10^{-3} , respectively. These estimated risks for the construction worker are below the acceptable noncarcinogenic hazard index (HI) of 1.0.

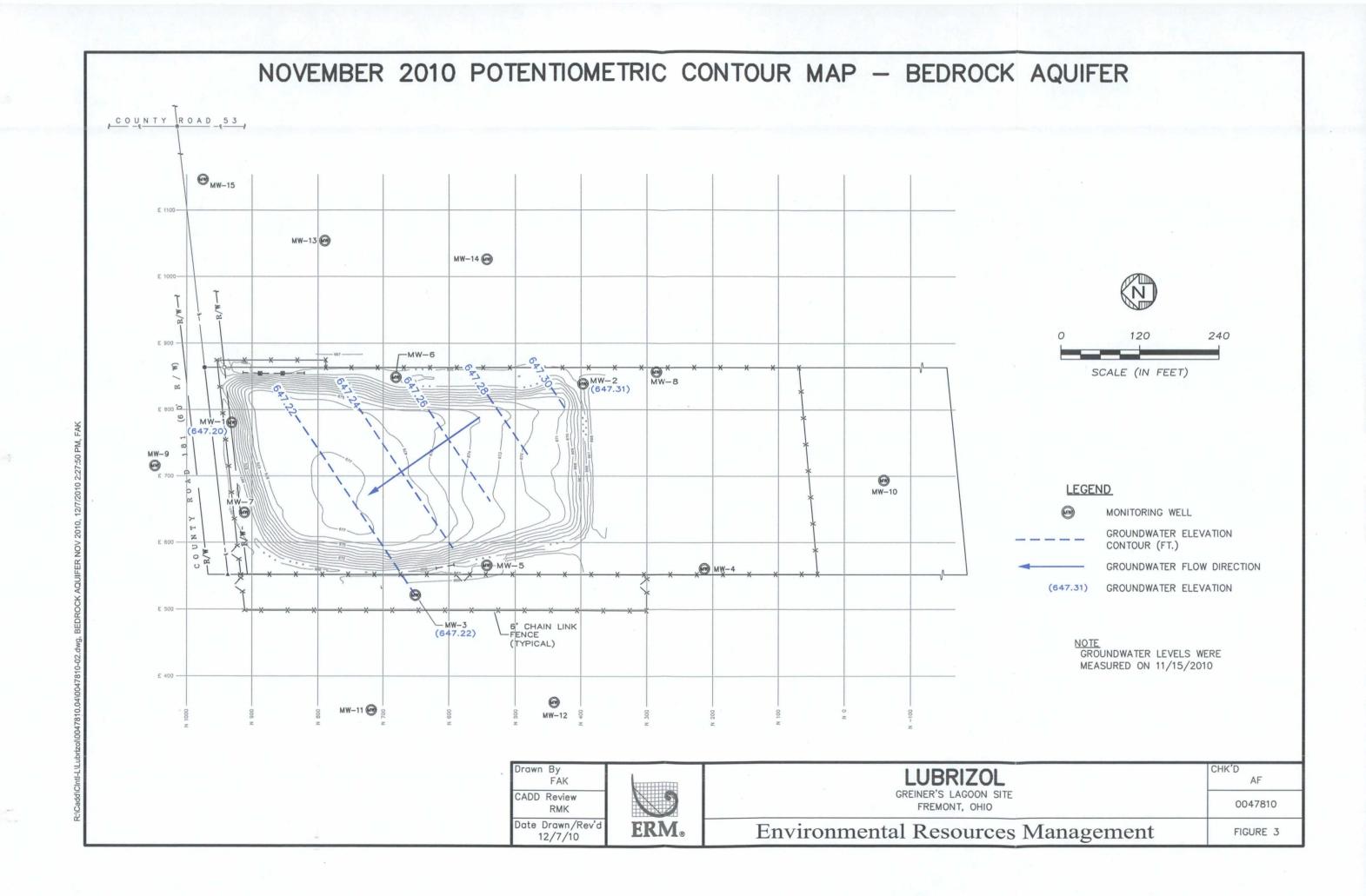
5.0 CONCLUSIONS

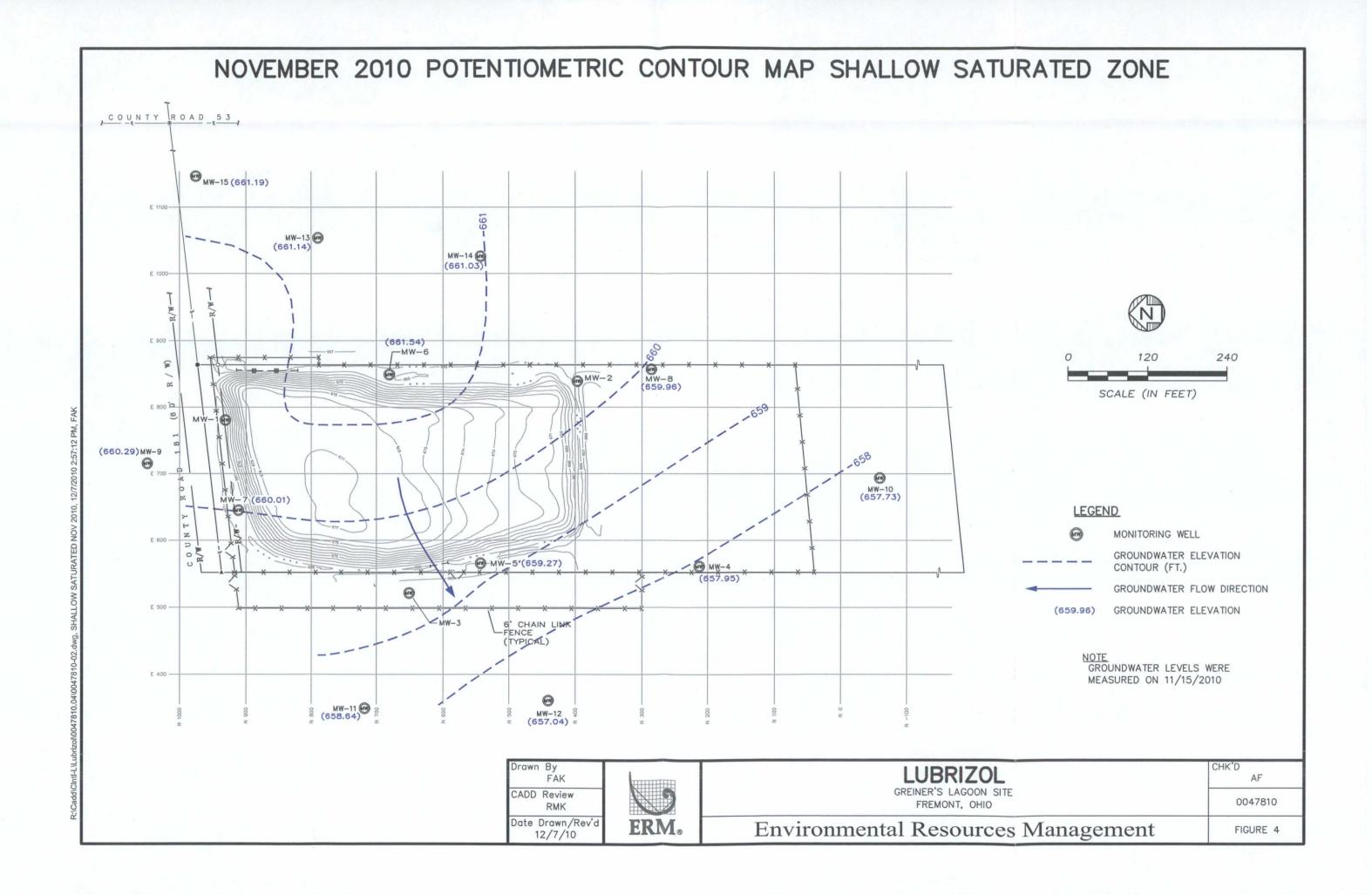
This report summarizes the operating activities at Greiner's Lagoon Superfund Site (Site Id. # 0550) located in Ballville Township (Site) in the fifth year of performance monitoring (2010 calendar year) and provides a review of the first five years of monitoring at the Site. Site activities were conducted according to the USEPA approved O&M Manual and consisted generally of groundwater sampling, erosion inspection and repair, and landscaping

In accordance with the Site O&M Manual, site inspections were performed quarterly for the years two through five following completion of the remedy. No major issues were identified as a result of the inspections and no seepage breakouts were identified during the entire five year inspection period. Maintenance activities completed at the site during the years of inspections included swale regrading (2006), a fence repair (2008), tree replacements, and animal burrow repairs.


The objective of the RA as stated in the SOW, Work Plan, and O&M Manual is to minimize the potential for human exposure to constituents of concern at levels that would result in calculated risks above USEPA threshold values for the Site. As shown herein, the Site remains protective of risk and is therefore meeting the RA objective. The institutional and engineering controls currently in place are necessary and sufficient.


The performance criteria for the RA as stated in the SOW, Work Plan, and O&M Manual are to confirm that there are no significant changes in the ground water quality and to determine if a significant reduction in leachate breakouts has occurred. Based on the performance standards, the remedial action at the Site continues to be effective. Any changes in groundwater quality are not significant as the Site continues to meet risked based criteria. Lastly, during the five year monitoring period, no seepage breakouts or evidence of seepage breakouts has been observed. The grass cover and poplar trees have been successfully planted and are flourishing.


Based on the five years of monitoring data, the phytoremediation cap is performing as it was designed and is meeting the stated remedial objectives and performance criteria. No additional action or modification to the phytoremediation system is therefore recommended.


Figures

d

Tables

Table 1 Greiner's Lagoon Historic Groundwater Elevations

Date		July 1996		11/10/1998		1/27/1999		4/28/1999	
Well ID	T.O.C.	DTW	GW ELV	DTW	GW ELV	DTW	GW ELV	DTW	GW ELV
MW-1	668.13	19.66	648.47	19.29	648.84	18.27	649.86	16.55	651.58
MW-2	669.88	21.14	648.74	20.88	649.00	20.02	649.86	18.30	651.58
MW-3	669.22	20.47	648.75	20.31	648.91	19.34	649.88	17.60	651.62
MW-4	667.51	3.75	663.76	7.29	660.22	2.17	665.34	1.50	666.01
MW-5	668.56	4.69	663.87	6.37	662.19	4.05	664.51	2.44	666.12
MW-6	667.45	3.42	664.03	4.38	663.07	1.26	666.19	0.92	666.53
MW-7	668.09	4.45	663.64	5.60	662.49	2.72	665.37	2.65	665.44
MW-8	667.17	3.31	663.86	4.73	662.44	0.83	666.34	0.72	666.45
MW-9	669.13	-	-	6.84	662.29	4.90	664.23	5.90	663.23
MW-10	670.82	•	-	10.23	660.59	7.62	663.20	3.75	667.07
MW-11	669.45	•	-	9.78	659.67	8.77	660.68	3.60	665.85
MW-12	669.89	-	-	11.88	658.01	10.80	659.09	3.60	666.29
MW-13	669.80		-	6.99	662.81	3.61	666.19	4.48	665.32
MW-14	669.70		- ' ' '	6.78	662.92	3.55	666.15	4.31	665.39
MW-15	669.31	-	-	-	-	•	-	-	-

Date		11/8/2006		11/12/2007		11/17/2008		11/9/2009	
Well ID	T.O.C.	DTW	GW ELV	DTW	GW ELV	DTW	GW ELV	DTW	GW ELV
MW-1	668.13	18.05	650.08	18.77	649.36	20.20	647.93	20.73	647.40
MW-2	669.88	19.51	650.37	20.76	649.12	22.14	647.74	22.85	647.03
MW-3	669.22	18.98	650.24	20.22	649.00	21.61	647.61	22.29	646.93
MW-4	667.51	4.68	662.83	5.57	661.94	9.57	657.94	9.98	657.53
MW-5	668.56	7.78	660.78	8.09	660.47	8.20	660.36	9.11	659.45
MW-6	667.45	3.22	664.23	4.02	663.43	2.78	664.67	5.89	661.56
MW-7	668.09	4.22	663.87	6.36	661.73	6.98	661.11	8.41	659.68
MW-8	667.17	0.96	666.21	4.40	662.77	5.62	661.55	7.55	659.62
MW-9	669.13	5.35	663.78	6.57 .	662.56	7.95	661.18	9.23	659.9
MW-10	670.82	9.25	661.57	9.01	661.81	12.21	658.61	13.16	657.66
MW-11	669.45	9.05	660.40	8.70	660.75	10.84	658.61	11.08	658.37
MW-12	669.89	10.95	658.94	10.05	659.84	13.27	656.62	13.4	656.49
MW-13	669.80	5.31	664.49	6.51	663.29	4.91	664.89	9.02	660.78
MW-14	669.70	4.91	664.79	6.45	663.25	4.73	664.97	9.05	660.65
MW-15	669.31	5.30	664.01	6.01	663.30	5.41	663.90	8.55	660.76

Da	ate	11/15/2010				
Well ID	T.O.C.	DTW	GW ELV			
MW-1	668.13	20.93	647.20			
MW-2	669.88	22.57	647.31			
MW-3	669.22	22.00	647.22			
MW-4	667.51	9.56	657.95			
MW-5	668.56	9.29	659.27			
MW-6	667.45	5.91	661.54			
MW-7	668.09	8.08	660.01			
MW-8	667.17	7.21	659.96			
MW-9	669.13	8.84	660.29			
MW-10	670.82	13.09	657.73			
MW-11	669.45	10.81	658.64			
MW-12	669.89	12.85	657.04			
MW-13	669.80	8.66	661.14			
MW-14	669.70	8.67	661.03			
MW-15	669.31	8.12	661.19			

Table 2 roundwater Data - November 2010 Greiner's Lagoon

4-Nitrophenol U <5.0 U																einer's Lagoon remont, Ohio												
Secretary Secretary (1988) Secretary Secretary (1988) Secretary Secretary (1989) Secretary Secretary Secretary (1989) Secretary Secretary (1989) Secretary Secretary (1989) Secretary Secretary (1989) Secretary Secretary Secretary (1989) Secretary Secretary Secretary (1989) Secretary Secretary Secretar	Sample ID:	I	1W-1	MW-	1 DUP	MW-2	MW-3	MW-	3 MS/DS	MW-4	MW-5	ТМ	W-6 N	1W-7	MW-8	MW-9	MW-10 N	/W-11 N	/W-12 M	W-13 MW-	-13 DUP I	IW-14 N	/W-15 Fa	nuipment Blank 1	Equipment Blan	k 2 Trip F	lank 1 Trip	Blank 2
Terminal Members 1		_						_																diplicant blank I	Equipment bian	KZ IIIp D	MILK I IIIp	Dittitle
Martine															•									20			Especial Circ	
September 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																												
Marchenology Marc		-																										
Marganton Marg		-																										
Manuscripton Manu	-,-,-	_																										
Company												_																
Secondary		-																										
Scheeningeree 1		U																										
September 19 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	1,2-Dibromo-3-chloropropane	U	<2.0	U	<2.0	U <2.0	U <	<2.0 U	<2.0 U	<2.0	U <1	0 U	<8.0 U	<2.0	U <2.0 U			<4.0 U	<4.0 U	<5.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0	U	<2.0 U	<2.0 U	<2.0
Section					<1.0	U <1.0	U <	<1.0 U					<4.0 U	<1.0		<1.0 U		<2.0 U	<2.0 U	<0.20 U	<4.0 U	<1.0 U	<1.0 U	<1.0	U	<1.0 U		
Askara		-																										
Second Month Q Q Q Q Q Q Q Q Q																												
Semente B			_									10 U																
Schleinerscheffen Q. 10. Q. 10		_		u				_			1	0 11			, ,													
Series Se			710	11																								
Same Manuelle M. J. Coll J. Co		_		I				_				u			,													
State 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		-		11			-					0 11																
Company		-		100								_																
Charles		_																										
Nonethinger Column Colum	Allyl chloride	U	<2.0	U																								
Semente Benefit	Benzene	U	<1.0	U	<1.0	U <1.0	U «	<1.0 U		<1.0	13	U	<4.0	1.9	U <1.0 U	<1.0 U	<1.0 U	<2.0 U	<2.0 U	<0.20 U	<4.0 U	<1.0 U	<1.0 U	<1.0	И	<1.0 U	<1.0 U	
Second Property Second Pro	Bromodichloromethane	_	<1.0	U		U <1.0	U <	<1.0 U				-	<4.0 U	<1.0	U <1.0 U	<1.0 U				<1.0 U		<1.0 U	<1.0 U	<1.0				
Schoelenstein P. 18 P. 10 P. 1		-																										
Scheenberger W. C.		U		U																								
Schelmentere 1, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4		J		J				_			*	_																
Scheeninger 1		-		U																								
Schedules U		-										_																
September 1		_									-																	
Schwenners 0 2 2 0 0		_										_																
September Sept		-										_																
Departmentment Department Departmentment Departmentment Departmentment Department Departmentment Departmentment Departmentment Department Departmentment Departmentment Department Department Department Department Department Department Departmentment Department Depart		-																										
Debarded Components		U	<1.0	U																								
	Dibromomethane	U	<1.0	U	<1.0	U <1.0	U <	<1.0 U	<1.0 U	<1.0	U <5	.0 U	<4.0 U	<1.0	U <1.0 U	<1.0 U	<1.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<1.0 U	<1.0 U	<1.0	U	<1.0 U	<1.0 U	<1.0
Fighteeners	Dichlorodifluoromethane	U	<1.0	U	<1.0	U <1.0	U <	<1.0 U	<1.0 U	<1.0	U <5	.0 U	<4.0 U	<1.0	U <1.0 U	<1.0 U	<1.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<1.0 U	<1.0 U	<1.0	U	<1.0 U		
	-	_	<1.0	U	<1.0	U <1.0	U <	<1.0 U	<1.0 U	<1.0	U <5	.0 U	<4.0 J	0.28	U <1.0 U	<1.0 U	<1.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<1.0 U	<1.0 U	<1.0	U	<1.0 U		
Methylatebols U		-						_				_																
Methodyshelmethed		-		_																								
Methy interplated 1		-						_							,													
Methylates chlorides		-		_																								
Property U				_								_																
Sympton		_																										
Free-Present Conference U clay U c		-																										
Followsky U Clay		-		U				_																				
Figure March Schleimene West Alph West	Toluene	И	<1.0	U	<1.0	U <1.0		_															<1.0 U					
Teach Applicable Performer March Applications	trans-1,2-Dichloroethene	U	<1.0	U	<1.0	U <1.0	U <	<1.0 U	<1.0 U	<1.0	U <5	.0 U	<4.0 U	<1.0	U <1.0 U	<1.0 U	<1.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<1.0 U	<1.0 U	<1.0	U	<1.0 U	<1.0 U	<1.0
Timble-description U cli	trans-1,3-Dichloropropene	U	<1.0	U	<1.0	U <1.0	U <	<1.0 U	<1.0 U	<1.0	U <5	.0 U	<4.0 U	<1.0	U <1.0 U	<1.0 U	<1.0 U	<2.0 U	<2.0 U	<5.0 U	<2.0 U	<1.0 U	<1.0 U	<1.0	U	<1.0 U	<1.0 U	<1.0
Tickhomomementer U Cit U C		- Ct																										
Vivel persente U		U		_								_																
Vivery classified U Cal U		u						_				_																
Sykene (bold)								_				_																
Stock right		_		11						<1.0		11	<4.0 U	<1.0	u <1.0 u					<1.0 U								
12.4Firthehorebrame	rijienes (iomij	U	~2.0	u	~2.0	42.0	-	L.U U	-2.0 U	~2.0	, 5.2	u	\0.0 U	~2.0	4 \2.0 U	~2.0 U	12.0 U	V4.0 U	1.0 U	~1.0 U	V4.0 U	2.0 0	~2.0 U	\2.0	u	-aiv U	-a.0 U	~2.0
12-Delichorberemene U <10 U		111	<1.0	11	<1.0	11 '-10	11	10 11	-10 11	<4.0	11 /	11 10	<4.0 11	-10	20 11	20 11	-10 11	-10 11	<50 II	20 11	20 11	20 11	<1.0 11	-10	11	<1.0	NΔ	NA
13-Delchrophemere		_		_				_																				
1.4-Delinforphorphorphorphorphorphorphorphorphorph		_																										
22-Oxybelsy-Chloropropenel U cl U	1,4-Dichlorobenzene	U	<1.0	U																			<1.0 U	<1.0	U	<1.0	NA	NA
2.46-firshprophenol U 5.0 NA NA NA PA PA-Dehlorophenol U 5.0		U																		<20 U								
24-Dichlorophenol U 20 U 2		_						_																				
24-Dimethylphenol U 20 U 2		_																										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																												
24-Dinitrobleme		_																				100000						
2.6.Phorophene		_																										
2-Chlorophenol U <1.0 U		_																										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																												
2-Methylnaphthalene U		_						_																				
2-Methylphenol U <1,0 U <		_																										
2-Nitrophenol U 2-0 U 2-	2-Methylphenol		<1.0	U	<1.0	U <1.0	U <		<1.0 U	<4.0	U <	0 U						<10 U	<5.0 U	<20 U	<20 U	<20 U		<1.0	U	<1.0		NA
3.3-Dichlorobenzidine U 0.00 $0.$		_													U <40 U	<40 U												
3-Nitroaniline		_																										
4,6-Dinitro-2-methylphenol U < 5.0 U		_																										
4Bromophenyl phenyl ether U 2.0 U 2.0																												
4-Chloro-3-methylphenol U 2.0 U 3.0 U 2.0																												
4-Chloroaniline		_																										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		_																										
4-Methylphenol U < 1.0 U < 4.0 U < 50 U < 4.0 U < 50 U		_																										
4-Nitroaniline U < 2.0 U < 3.0																												
4-Nitrophenol U <5.0 U	4-Nitroaniline	_																										
Acenaphthene U <0.20 U <0.80 U <10 U <2.0 U <4.0 U <4.0	4-Nitrophenol	_														<100 U	<50 U											
	Acenaphthene	U	<0.20	U	< 0.20	U <0.20	U <0	0.20 U	<0.20 U	<0.80	U <1	0 U	<0.80 U	<2.0	U <4.0 U	<4.0 U	<2.0 U	<2.0 U	<1.0 U	<4.0 U	<4.0 U	<4.0 U	<0.20 U	<0.20	U «	(0.20	NA	NA

61- ID-	MW-1 MW-1 DUP	MW-2	MW-3 N	IW-3 MS/DS	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	MAY 10	MW 12 11	MW 12 DUD	14117 14 T	MANAGE	Equipment Blank 1	Faulancest Plants 2	Tale Plant 1	Trin Plant 2
Sample ID:	11/18/2010 11/18/2010		11111 0 11	11/18/2010	17277 2	111110	11/18/2010		11211 0				MW-12 1/17/2010 1			MW-14 1/16/2010	MW-15	Equipment Blank I	Equipment Blank 2	Imp Blank I	Trip Blank 2
Acenaphthylene	U <0.20 U <0.20	U <0.20	U <0.20	U <0.20	U <0.80	,,	,,	U <2.0 U				<2.0 U	<1.0	U <4.0	,,		U <0.20	U <0.20	U <0.20	NA	NA
Anthracene	U <0.20 U <0.20	U <0.20	U <0.20	U <0.20	U <0.80			U <2.0 U		<4.0			<1.0	U <4.0			U <0.20		U <0.20	NA	NA
Benzo(a)anthracene		U <0.20	U <0.20	U <0.20	U <0.80					<4.0				U <4.0						NA	NA
Benzo(a)pyrene	U <0.20 U <0.20			U <0.20						<4.0										NA	NA
Benzo(b)fluoranthene	U <0.20 U <0.20	U <0.20	U <0.20	U <0.20	U <0.80	U <10	U <0.80	U <2.0 U	<4.0 U	<4.0	U <2.0 U	<2.0 U	<1.0	U <4.0	U <4.0 U	<4.0	U <0.20	U <0.20	U <0.20	NA	NA
Benzo(ghi)perylene	U <0.20 U <0.20	U <0.20	U <0.20	U <0.20	U <0.80	U <10	U <0.80	U <2.0 U	<4.0 U	<4.0		<2.0 U	<1.0	U <4.0	U <4.0 U	<4.0	U <0.20	U <0.20	U <0.20	NA	NA
Benzo(k)fluoranthene	U <0.20 U <0.20	U <0.20	U <0.20	U <0.20	U <0.80	U <10	U <0.80	U <2.0 U		<4.0	U <2.0 U	<2.0 U	(1.0)	U <4.0	U <4.0 U	<4.0	U <0.20	U <0.20	U <0.20	NA	NA
bis(2-Chloroethoxy)methane	U <1.0 U <1.0	U <1.0								<20 1		<10 U		U <20		_				NA	NA
bis(2-Chloroethyl) ether	U <1.0 U <1.0									<20 1										NA	NA
bis(2-Ethylhexyl) phthalate	B 11 U <2.0			211	U <8.0							, , ,		410						NA	NA
Butyl benzyl phthalate	U <1.0 U <1.0									<20										NA	NA
Carbazole	U <1.0 U <1.0 U <0.20 U <0.20									<20 (U <20						NA NA	NA NA
Chrysene Dibenz(a,h)anthracene	U <0.20 U <0.20 U <0.20									<4.0										NA NA	NA
Dibenzofuran	U <1.0 U <1.0	- 10720					49100		7.2.12	<20										NA	NA
Diethyl phthalate	U <1.0 U <1.0									<20										NA	NA
Dimethyl phthalate	U <1.0 U <1.0									<20								-2.0		NA	NA
Di-n-butyl phthalate	U <1.0 U <1.0			U <1.0						<20										NA	NA
Di-n-octyl phthalate	U <1.0 U <1.0									<20										NA	NA
Fluoranthene	U <0.20 U <0.20									6.2										NA	NA
Fluorene	U <0.20 U <0.20									<4.0							U <0.20			NA	NA
Hexachlorobenzene	U <0.20 U <0.20									<4.0										NA	NA
Hexachlorobutadiene	U <1.0 U <1.0									<20										NA	NA
Hexachlorocyclopentadiene	U <10 U <10	U <10	U <10					U <100 U		200	U <100 U	<100 U								NA	NA
Hexachloroethane	U <1.0 U <1.0	U <1.0		U <1.0			U <4.0			<20	U <10 U	<10 U							54 4210	NA	NA
Indeno(1,2,3-cd)pyrene	U <0.20 U <0.20	U <0.20	U <0.20	U <0.20	U <0.80					<4.0	U <2.0 U								U <0.20	NA	NA
Isophorone	G 41.0 G 41.0	U <1.0		U <1.0						<20	U <10 U U <2.0 U									NA NA	NA NA
Naphthalene Nitrobenzene	U <0.20 U <0.20 U <1.0 U <1.0	U <0.20 U <1.0	U \0.20	U <0.20 U <1.0	U <0.80 U <4.0		U <0.80 U <4.0	U <2.0 U	V1.0 C	<4.0 <20	U <10 U									NA NA	NA
N-Nitrosodi-n-propylamine	U <1.0 U <1.0									<20										NA	NA NA
N-Nitrosodiphenylamine	U <1.0 U <1.0									<20										NA	NA
Pentachlorophenol	U <5.0 U <5.0	U <5.0								<100										NA	NA
Phenanthrene	U <0.20 U <0.20	U <0.20			U <0.80					<4.0								U <0.20	U <0.20	NA	NA
Phenol	U <1.0 U <1.0	U <1.0	U <1.0	U <1.0	U <4.0	U <50	U <4.0	U <10 U	<20 U	<20	U <10 U	<10 U	(5.0	U <20	U <20 L	<i>l</i> <20	U <1.0	U <1.0	U <1.0	NA	NA
Pyrene	U <0.20 U <0.20	U <0.20	U <0.20	U <0.20	U <0.80	U <10	U <0.80	U <2.0 U	<4.0 U	<4.0	U <2.0 U	<2.0 U	I <1.0	U <4.0	U <4.0 L	I <4.0	U <0.20	U <0.20	U <0.20	NA	NA
Metals (ug/L)					Den le La																
Antimony	U <60.0 U <60.0		-			100	210	U <60.0 U			U <60.0 U									NA	NA
Arsenic	U <10.0 U <10.0		C1 11010	410.0	U <10.0	12.6	31.3	99.7 B	2010	210	U <10.0 B	8.3 B	5	23.2	21.2	11.3			<i>U</i> <10.0	NA	NA
Beryllium	U <5.0 U <5.0		B 0.46	0.0	B 0.6	B 0.77	B 0.57	B 0.5 B	0.89	00.1	U <5.0 U				U <5.0 L				B 0.49	NA	NA
Cadmium	U <5.0 U <5.0		U <5.0					U <5.0 U	-0.0		U <5.0 U			U <5.0	U <5.0 L				U <5.0	NA	NA
Chromium	U <10.0 U <10.0 U <25.0 U <25.0	U <10.0	Ci (10.0	U <10.0			4 410.0	U <10.0 U	0.00	40.0	U <10.0 U	<10.0 U		U <10.0	U <10.0 E	2017	U <1.0		U <10.0 U <25.0	NA	NA NA
Copper	et 48010 et 48010	-		U <25.0			42010	C	2010 2	4.4	U <25.0 U	<25.0 U		U <25.0						NA NA	NA NA
Lead Mercury	U <3.0 U <3.0 U <0.20 U <0.20	U <3.0	U <3.0 U <0.20		U <3.0		U <3.0 U <0.20	U <3.0 U	2.9 B <0.20 U	<0.20	U <3.0 U <0.20 U	3 U <0.20 U	I <3.0 I <0.20	3.6 U <0.20	3.2 U U <0.20 U	I <5.0 I <10.0	U <5.0 <2.0			NA NA	NA NA
Nickel	U <40.0 U <40.0	U <40.0					B 11.4	55.4 B	25.9 B	14.3	B 16.2 B	32	50.4	B 12	B 10.7 B		B <2.0			NA	NA
Selenium	U <5.0 U <5.0						U <5.0				U <5.0 U			U <5.0	U <5.0 E	, -	U <5.0		U <5.0	NA	NA
Silver	U <10.0 U <10.0		U <10.0			7.10	40.0	U <10.0 U	<10.0 U	<10.0	U <10.0 U			U <10.0	U <10.0 L	I <10.0			U <10.0	NA	NA
Thallium			U <10.0	U <10.0			U <10.0	U <10.0 U		7.9	I 10.1 B	1 9.8 B	J 8.6 E	3 4.9	U <10.0 L	l <5.0			U <10.0	NA	NA
Zinc	U <20.0 U <20.0	U <20.0	U <20.0	U <20.0		J 23.9	U <20.0	BJ 5.6 B	/		U <20.0	20.3 B	8.2	B 9.1	35.4 L	I <25.0	- 1		U <20.0	NA	NA
Dissolved Metals (ug/L)																					Residence.
Antimony-DISS	U <60.0 U <60.0	U <60.0	U <60.0	U <60.0	U <60.0	104	U <60.0	U <60.0 U	<60.0 U	<60.0	B 3 B	2.9 U	I <60.0	U <60.0	U <60.0 L	I <60.0	U <60.0	U <60.0	U <60.0	NA	NA
Arsenic-DISS	U <10.0 U <10.0	B 5.5	U <10.0	U <10.0	U <10.0	11	30.7	75.7	4	31.1	B 4.1	10.7 B	6.5	23.4	23.6	10.8	B 3.7	B 3.4	U <10.0	NA	NA
Beryllium-DISS	U <5.0 U <5.0	B 0.59	B 0.46	B 0.46	B 0.56	B 0.7	B 0.55	U <5.0 B	0.62 U	<5.0	U <5.0 U	<5.0 U	l <5.0	U <5.0	U <5.0 L	I <5.0	U <5.0	U <5.0	U <5.0	NA	NA
Cadmium-DISS	U <5.0 U <5.0	U <5.0	U <5.0	U <5.0			U <5.0	U <5.0 U	<5.0 U	<5.0	U <5.0 U	<5.0 U	I <5.0	U <5.0	U <5.0 L	I <5.0			U <5.0	NA	NA
Chromium-DISS	U <10.0 U <10.0		U <10.0	U <10.0				U <10.0 B	<10.0 U		U <10.0 U								U <10.0	NA	NA
Copper-DISS	U <25.0 U <25.0	U <25.0		U <25.0				U <25.0 B	<25.0 U	<25.0	U <25.0 U			U <25.0						NA	NA
Lead-DISS	U <3.0 U <3.0	U <3.0					U <3.0	U <3.0 B	<3.0 U	<3.0	U <3.0 U								U <3.0	NA	NA
Mercury-DISS	U <0.20 U <0.20	U <0.20	-							< 0.20	U <0.20 U								U <0.20	NA	NA
Nickel-DISS	U <40.0 U <40.0	U <40.0				110	B 9.6	52.9 B	15.8 B	8.3	B 16.8 B	29.6	5.3			19.5	-	U <40.0	U <40.0	NA	NA
Selenium-DISS	U <5.0 U <5.0						40.10	U <5.0 U	<5.0 U	-010	U <5.0 U	<5.0 U	(5.0)	U <5.0						NA	NA
Silver-DISS	U <10.0 U <10.0	U <10.0	U <10.0		U <10.0			U <10.0 U	110.0 4	44010	U <10.0 U	<10.0 U	/ <10.0	U <10.0	U <10.0 L	I <10.0	U <10.0		U <10.0 U <10.0	NA NA	NA NA
Thallium-DISS	U <10.0 U <10.0		U <10.0					U <10.0 U			3 7.2 B	J 5.8 B	9.3	U <10.0	U <10.0 B	_	U <10.0	-		NA NA	NA NA
Zinc-DISS	U <20.0 U <20.0	U <20.0	U <20.0	U <20.0	U <20.0	BJ 5.7	U <20.0	U <20.0 J	7.6 B	12.5	B 6.5 B	18.1 B	13.4	U <20.0	<20.0 E	5.1	B 5.2	U <20.0	u <20.0	INA	INA

Notes:
This table was developed based on the analytical data from Test America Laboratories, 4101 Shuffel Drive NW, North Canton, Ohio, 44720.
B - Estimated result. Result is less than Reporting Limit.
J (Metals) - Method blank contamination. The associate method blank contains the analyte at a reportable level.

J (VOCs & SVOCs) - Estimated result. Result is less than Reporting Limit.

Bold results indicate a detection above lab detection limits.

NT - Dissolved Metals Analysis could not be run due to insufficint amount of sample

Table 3 Greiners Lagoon Historic Detection Summary Table Deep Wells

1000				MW-1			Barrier and		
	Constituent	EPC	MCL	1998	2006	2007	2008	2009	2010
VOCs	Carbon disulfide (µg/l)	N/A	1,000	< 2.0	< 2.0	0.99 J	< 2.0	0.59 J	0.75 J
SVOCs	bis-2-ethylhexyl phthalate (µg/l)	7.4	6.0	< 40	< 40	< 40	1.3 B, J	1.2 J	11 B
SVOCS	Phenol (µg/l)	2.8	11,000	2.8	< 20	< 20	< 20	< 20	< 1.0
	Beryllium (mg/l)	N/A	0.004	< 0.005	< 0.005	< 0.005	0.0011 B,J	< 0.005	< 0.005
Metals	Lead (mg/l)	0.014	0.015	0.0052	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Metals	Thallium (mg/l)	N/A	0.002	< 0.010	< 0.010	.0079 J	< 0.010	< 0.010	< 0.010
	Zinc (mg/l)	0.08	11.0	0.055	< 0.020	< 0.020	0.0071 B	< 0.020	< 0.020
				MW-2					
W. O.L.	Constituent	EPC	MCL	1998	2006	2007	2008	2009	2010
SVOCs	bis-2-ethylhexyl phthalate (µg/l)	7.4	6.0	< 40	0.89	< 40	2.5	< 40	< 2.0
SVOCS	Di-n-butyl phthalate (μg/l)	N/A	3,700	< 20	< 20	0.87 J, B	< 20	< 20	< 1.0
	Arsenic (mg/l)	N/A	0.010	< 0.010	< 0.010	0.0071 B	< 0.010	0.0053 B	0.0055 E
	Beryllium (mg/l)	N/A	0.004	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.00074
Metals	Lead (mg/l)	0.014	0.015	0.0099	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
	Thallium (mg/l)	N/A	0.002	< 0.010	< 0.010	0.0098 B, J	< 0.010	< 0.010	< 0.010
	Zinc (mg/l)	0.08	11.0	0.08	0.0075 B	< 0.020	< 0.020	.0056 B,J	< 0.020
				MW-3					
	Constituent	EPC	MCL	1998	2006	2007	2008	2009	2010
VOCs	Acetone (μg/l)	480	22,000	< 20	8.8 B	6.6 J	6.4 J	< 20	3.8 J
VOUS	4-methyl-2-pentanone(μg/l)	170	2,000	< 20	1.7	1.9 J	1.0 J	0.81 J	< 10
SVOCs	bis-2-ethylhexyl phthalate (μg/l)	7.4	6.0	15 B	< 2.0	< 2.0	1.2 J	< 2.0	1.7 J B
30005	Di-n-butyl phthalate (μg/l)	N/A	3,700	< 20	< 20	0.81 J, B	1.2 J	< 20	< 1.0
	Arsenic (mg/l)	N/A	0.010	< 0.010	< 0.010	0.0036 B	< 0.010	< 0.010	< 0.010
	Antimony (mg/l)	N/A	0.006	< 0.060	< 0.060	< 0.060	0.0036 B,J	< 0.060	< 0.060
	Beryllium (mg/l)	N/A	0.004	< 0.005	< 0.005	< 0.005	0.0012 B,J	< 0.005	0.00046
Metals	Lead (mg/l)	0.014	0.015	0.014	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Wetais	Cadmium (mg/l)	N/A	0.005	< 0.005	0.003 B	< 0.005	< 0.005	< 0.005	< 0.005
	Selenium (mg/l)	N/A	0.050	< 0.005	< 0.005	< 0.005	0.0043 B	< 0.005	< 0.005
	Thallium (mg/l)	N/A	0.002	< 0.010	< 0.010	< 0.010	< 0.010	.0048 B	< 0.010
	Zinc (mg/l)	0.08	11.0	0.061	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020

Table includes results for detected compounds only.

Note: B denotes a Consitiuent detected in Method Blank

J denotes a Constitiuent detected between the MDL and the RL

Deep Well, Perched Off-site, Perched On-site EPC values obtained from Risk Assessment

Metals listed are dissolved (filtered) metals

EPC = Exposure Point Concentration from EE/CA

N/A = Constituent not detected during Risk Assessment Calcualtions and therefore no

Bold Values indicates an EPC exceedance.

Highlighted values indicate an MCL exceedance

Table 4

Greiners Lagoon
Historic Detection Summary Table
Shallow On-site Wells

				MW-4		A Property			
	Constituent	EPC	MCL	1998	2006	2007	2008	2009	2010
-V12-17	Acetone (µg/l)	170,000	22,000	8.3	2.9	3.5 J	3.4 J	5.2 J	3.3 J
	4-methyl-2-pentanone(μg/l)	110,000	2,000	< 20	< 20	< 20	0.46 J	< 20	< 10
VOCs	2-Butanone (µg/l)	22,000	7,100	< 20	< 20	< 20	0.57 J	< 20	< 10
	Benzene (µg/l)	2,200	5	1.6	< 2.0	< 2.0	< 2.0	< 2.0	< 1.0
7	Toluene (ug/l)	10,000	1,000	< 2.0	< 2.0	< 2.0	< 2.0	0.52 J	< 1.0
SVOCs	bis(2-ethylhexyl) phthalate (µg/l)	N/A	6	< 40	< 40	1.0 J	< 40	< 40	< 8.0
LO DE	Arsenic (mg/l)	0.143	0.01	0.018	< 0.010	0.0038 B	< 0.010	< 0.010	< 0.010
	Antimony (mg/l)	0.008	0.006	< 0.060	< 0.060	< 0.060	0.0021 B	< 0.060	< 0.060
	Beryllium (mg/l)	N/A	0.004	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.00056
	Chromium (mg/l)	0.265	0.1	0.02	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Metals	Copper (mg/l)	0.517	1.3	0.038	0.0055 B	0.0059 B	< 0.025	< 0.025	< 0.025
	Lead (mg/l)	3.35	0.015	0.013	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
	Nickel (mg/l)	0.627	0.73	< 0.040	0.0066 B	0.0095 B	0.0102 B	.0117 B	0.0082
	Zinc (mg/l)	1.93	11	0.15	0.0072 B	< 0.020	0.0057 B,J	.0078 B,J	< 0.020
				MW-5	0.00.122	7 01020	0.000. 2,0	10010 2,0	4 01020
	Constituent	EPC	MCL	1998	2006	2007	2008	2009	2010
	Acetone (µg/l)	170,000	22,000	500	2,700	120	130	74	130
	Benzene (µg/l)	2,200	5	63	30	22	11	13	13
	4-methyl-2-pentanone(μg/l)	110,000	2,000	80	9,800	< 20	170	290	340
	2-Butanone (MEK) (µg/l)	22,000	7,100	77	200	15 J	32 J	16 J	42 J
	Carbon disulfide (µg/l)	N/A	1,000	< 2.0	< 2.0	3.9 J	1.7 J	2.5 J	1.7 J
VOCs	Ethylbenzene (μg/l)	3,800	700	5.7	< 2.0	9.7 J	4.0 J	2.9 J	2.4 J
- 188	Methylene chloride (μg/l)	N/A	5	< 2.0	< 2.0	3.5 J, B	< 2.0	2.8 J,B	< 5.0
200	Trichloroethene (μg/l)	N/A	5	< 2.0	< 2.0	6.1 J	4.6 J	3.0 J	2.0 J
	Toluene (µg/l)	10,000	1,000	8.5	< 2.0	39	15	6.3	7
	Xylene (μg/l)	19,000	10,000	11	< 4.0	20	11	6.2 J	5.2 J
	Diethyl phthalate (μg/l)	N/A	29,000	< 20	76	< 20	< 20	< 20	< 20
SVOCs	2,4-Dimethylphenol (ug/l)	N/A N/A	7,300	< 40	< 40	< 40	16 J	< 40	< 100
SVOCS	Phenol (ug/l)	320,000	11,000	< 20	< 20	< 20	27	< 20	< 50
	Antimony (mg/l)	0.008	0.006	< 0.060	0.0252 B	0.11	0.0914	0.155	0.104
	Arsenic (mg/l)	0.143	0.000	0.018	0.0232 B	0.0833	0.0335	0.0151	0.104
	Beryllium (mg/l)	N/A	0.004	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.00071
	Chromium (mg/l)	0.265	0.004	0.007	0.0049 B	0.0126	0.0056 B	.0037 B	.0024 E
	Copper (mg/l)	0.517	1.3	< 0.025	< 0.025	< 0.0126	0.0128 B	< 0.025	< 0.025
Metals	Lead (mg/l)	3.35	0.015	< 0.003	< 0.003	< 0.003	0.0351	< 0.003	.0021 E
96.90	Nickel (mg/l)	0.627	0.73	< 0.000	0.119	0.069	0.0562	0.0503	0.14
	Selenium (mg/l)	N/A	0.05	< 0.005	0.009	0.0064	0.0068	0.0055	0.0094
	Thallium (mg/l)	N/A	0.002	< 0.010	0.0064 B	< 0.010	< 0.010	< 0.010	< 0.010
	Zinc (mg/l)	1.93	11	0.13	0.0233	0.0174 B		< 0.020	.0057 B,
				MW-6	0.000	0.017.12	0.0.00 0,0	4 0.020	10001 0,
	Constituent	EPC		_	2000	2007	0000	0000	2010
	Constituent		MCL	1998	2006	2007	2008	2009	2010
	Acetone (μg/l)	170,000	22,000	1,400	13	25	18 J	8,000	230
VOCa	4-methyl-2-pentanone(μg/l)	110,000	2,000 7,100	600	< 20	0.82 J	< 20	< 20	< 40
VOCs	2-Butanone (µg/l)			< 20	2.1	2.2 J	2.3 J	< 20	8 J
	Benzene (µg/l)	2,200	5	18	1.5	1.6	< 20	< 20	< 20
	Carbon disulfide (µg/l)	N/A	1,000	< 2.0	< 2.0	0.45 J	< 2.0	< 2.0	< 4.0
2000-	Methylene chloride (ug/l)	N/A	5	< 2.0	< 2.0	< 2.0	< 2.0	69 J,B	< 4.0
SVOCs	Phenol (µg/l)	320,000	11,000	1,400	< 20	< 20	< 20	< 20	< 4.0
HOA	Antimony (mg/l)	0.008	0.006	< 0.060	0.0061 B	0.0042 B	0.006 B	.0285 B	< 0.060
	Arsenic (mg/l)	0.143	0.01	0.066	0.024	0.0459	0.0169	0.13	0.0307
Matela	Beryllium (mg/l)	N/A	0.004	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.00055
Metals	Chromium (mg/l)	0.265	0.1	< 0.025	< 0.025	< 0.025	< 0.025	.0052 B	< 0.010
1999	Copper (mg/l)	0.517	1.3	0.041	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
	Nickel (mg/l)	0.627	0.73	< 0.04	0.001 B	0.0102 B	0.0158 B	.0096 B	.0096 E
W. T.	Zinc (mg/l)	1.93	11	0.063	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020

Table includes results for detected compounds only.

Table 4 (continued) Greiners Lagoon Historic Detection Summary Table Shallow On-site Wells

				MW-7				107, 677	
	Constituent	EPC	MCL	1998	2006	2007	2008	2009	2010
	Acetone (µg/l)	170,000	22,000	19	6.4	20 J	12 J	43	25
	2-Butanone (μg/l)	22,000	7,100	< 20.0	1.5	< 20.0	3.6 J	3.8 J	3.6 J
	Benzene (µg/l)	2,200	5	23	13	9.2	5.7	2.9	1.9
V00-	Carbon disulfide (ug/l)	N/A	1,000	< 2.0	< 2.0	< 2.0	< 2.0	0.64 J	< 1.0
VOCs	Ethyl methacrylate (µg/l)	N/A	3,300		< 1.0	< 5.0	< 5.0	< 1.0	0.28 J
	4-methyl-2-pentanone(µg/l)	110,000	2,000	< 20	< 20	< 20	2.7 J	4.4 J	3.4 J
	Toluene (ug/l)	N/A	1000	< 5.0	< 1.0	< 5.0	< 5.0	< 1.0	0.2 J
	Methylene chloride (µg/l)	N/A	5	< 2.0	< 2.0	1.7 J, B	< 2.0	< 2.0	< 1.0
SVOCs	Phenol (µg/l)	320,000	1,000	< 20	< 20	< 20	3.8 J	< 20	< 10
	Antimony (mg/l)	0.0080	0.006	< 0.060	< 0.060	0.0158 B	0.007 B	0.0087 B	< 0.060
	Arsenic (mg/l)	0.143	0.01	0.086	0.0885	0.246	0.192	0.264	0.0757
	Copper (mg/l)	0.517	1.3	0.028	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
	Lead (mg/l)	3.35	0.015	0.0033	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Metals	Mercury (mg/l)	0.001	0.002	< 0.020	< 0.020	< 0.020	< 0.020	.00015 B	< 0.020
	Nickel (mg/l)	0.627	0.73	< 0.040	0.0167 B	0.0152 B	0.0194 B	.0202 B	0.053
	Selenium (mg/l)	N/A	0.05	< 0.005	< 0.005	0.0044 B	< 0.005	< 0.005	< 0.005
	Thallium (mg/l)	N/A	0.002	< 0.010	0.0091 B	< 0.010	< 0.010	< 0.010	< 0.010
	Zinc (mg/l)	1.93	11	0.11	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
				MW-8			4-27-1		
	Constituent	EPC	MCL	1998	2006	2007	2008	2009	2010
	Acetone (µg/l)	170,000	22,000	6.3	2.6	1.2 J	6.9 J	23	45
	Benzene (µg/l)	2,200	5	1.3	< 2.0	< 2.0	< 2.0	< 2.0	< 1.0
	2-Butanone (µg/l)	22,000	7,100	< 20	1.5	< 20	< 20	0.89 J	3 J
VOCs	Carbon disulfide (µg/l)	N/A	1,000	< 2.0	< 2.0	< 2.0	< 2.0	0.29 J	< 1.0
	Isobutyl alcohol (µg/l)	N/A	11000		< 50	< 50	<100	< 50	11 J
	Toluene (µg/l)	N/A	1000	< 5.0	< 1.0	< 1.0	< 2.0	< 1.0	0.23
	4-methyl-2-pentanone(μg/l)	110,000	2,000	< 20	< 20	< 20	< 20	1.3 J	3.1 J
	Antimony (mg/l)	0.0080	0.006	< 0.060	< 0.060	< 0.060	0.0035 B	.0035 B	< 0.060
	Arsenic (mg/l)	0.143	0.01	0.039	< 0.010	< 0.010	< 0.010	0.039	0.004
	Beryllium (mg/l)	N/A	0.004	< 0.005	< 0.005	< 0.005	< 0.005	.00070 B	.00062 B
	Cadmium (mg/l)	0.017	0.005	< 0.005	< 0.005	< 0.005	< 0.005	.0012 B	< 0.005
Metals	Chromium (mg/l)	0.265	0.1	0.0088	< 0.010	< 0.010	0.0029 B	0.0262	< 0.010
ivietais	Copper (mg/l)	0.517	1.3	0.026	0.0043 B	< 0.025	< 0.025	0.0884	< 0.025
	Lead (mg/l)	3.35	0.015	0.0088	< 0.003	< 0.003	< 0.003	0.0221	< 0.003
	Nickel (mg/l)	0.627	0.73	< 0.040	0.0153 B	0.0175 B	0.0259 B	0.0518	.0158 B
	Thallium (mg/l)	N/A	0.002	< 0.010	0.005 B	< 0.010	< 0.010	0.0105	< 0.010
	Zinc (mg/l)	1.93	11	0.12	< 0.020	< 0.020	0.0068 B,J	0.153	.0076 J

Table includes results for detected compounds only.

Note: B denotes a Consitiuent detected in Method Blank

J denotes a Constitiuent detected between the MDL and the RL

Deep Well, Perched Off-site, Perched On-site EPC values obtained from Risk Assessment

Metals listed are dissolved (filtered) metals

EPC = Exposure Point Concentration from EE/CA

N/A = Constituent not detected during Risk Assessment Calcualtions and therefore no EPC applies

Bold Values indicates an EPC exceedance.

Highlighted values indicate an MCL exceedance

Table 5 Greiners Lagoon Historic Detection Summary Table Shallow Off-site Wells

				MW-9					
	Constituent	EPC	MCL	1998	2006	2007	2008	2009	2010
100000	Acetone (µg/l)	2,750	22000	16	9.3 B	4.8 J	23 J	21	28
	Acetonitrile (µg/l)	N/A	1300	< 40	1.5 B	< 40	< 40	< 40	< 20
	2-Butanone (µg/l)	N/A	7100	< 20	1.1	1.0 J	< 20	< 20	2.8 J
	Carbon disulfide (ug/l)	N/A	1000	< 2.0	< 2.0	< 2.0	< 2.0	1.6 J	< 1.0
VOCs	Vinyl acetate (µg/l)	N/A	4100	< 4.0	0.67	< 4.0	< 4.0	< 4.0	< 2.0
	Methylene chloride (ug/l)	N/A	5	< 2.0	< 2.0	< 2.0	18	< 2.0	< 2.0
	4-methyl-2-pentanone(µg/l)	15	2000	3.7	0.48	0.47 J	< 20	1.8 J	2.2 J
	Toluene (ug/l)	N/A	1000	< 2.0	< 2.0	< 2.0	< 2.0	0.27 J	< 1.0
	Antimony (mg/l)	N/A	0.006	< 0.060	< 0.060	< 0.060	0.0054 B,J	< 0.060	< 0.060
	Arsenic (mg/l)	0.0258	0.01	0.016	0.0195	0.0195	0.0198	0.0286	0.0311
	Beryllium (mg/l)	0.0055	0.004	< 0.005	< 0.005	< 0.005	0.0011 B,J	< 0.005	< 0.005
	Chromium (mg/l)	0.208	0.1	0.016	< 0.010	< 0.003	< 0.010	< 0.010	< 0.010
Metals	Copper (mg/l)	0.574	1.3	0.035	< 0.025	< 0.010	< 0.010	< 0.010	< 0.010
Victais	Lead (mg/l)	0.19	0.015	0.015	< 0.003	< 0.003	< 0.023	< 0.003	< 0.023
	Nickel (mg/l)	0.13	0.73	< 0.040	0.0117 B	0.0055 B	0.0083 B	.0076 B	.0083 B
	Thallium (mg/l)	N/A	0.002	< 0.010	< 0.010	< 0.010	0.0083 B	< 0.010	.0066 B, J
	Zinc (mg/l)	1.27	11	0.13	< 0.010	< 0.010	0.0097 B	.0066 B,J	.0125 B
	Zinc (mg/i)	1.21	- 11		< 0.020	< 0.020	0.0037 B	.0000 B,0	.0123 B
				MW-10					
	Constituent	EPC	MCL	1998	2006	2007	2008	2009	2010
	Acetone (µg/l)	2,750	22000	10	11 B	12	6.3 J,B	16 J	21
VOCs	Toluene (ug/l)	N/A	1000	< 2.0	< 2.0	< 2.0	< 2.0	0.55 J	< 1.0
	4-methyl-2-pentanone(μg/l)	15	2000	< 20	0.51	2.8 J	0.36 J	< 20	0.34 J
53.00	2-Butanone (µg/l)	N/A	7100	< 20	0.73	0.68 J, B	< 20	< 20	1.5 J
	Arsenic (mg/l)	0.0258	0.01	< 0.010	< 0.010	0.0049 B	< 0.010	< 0.010	.0041 B
	Antimony (mg/l)	N/A	0.006	< 0.010	<0.060	<0.060	<0.060	< 0.010	3 B
	Chromium (mg/l)	0.208	0.1	0.016	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Metals	Nickel (mg/l)	0.86	0.73	< 0.040	0.0223 B	.0209 B	.0136 B	.0202 B	.0168 B
	Lead (mg/l)	0.19	0.015	0.0095	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
	Thallium (mg/l)	N/A	0.002	< 0.010	< 0.010	0.0053 B	< 0.010	.0059 B	.0072 B, c
	Zinc (mg/l)	1.27	11	0.095	0.0108 B	.0128 B	.006 B	.0050 B,J	.0065 B
				MW-11					
12 140	Constituent	EPC	MCL	1998	2006	2007	2008	2009	2010
46.867	Acetone (µg/l)	2,750	22000	11	29 B	46	37	14 J	11 J
	2-Butanone (µg/l)	N/A	7100	< 20	2.9	1.3 J	3.1 J	< 20	< 20
	1,4 Dioxane (ug/l)	N/A	0.67	< 400	50	< 400	< 400	< 400	< 400
	Carbon disulfide	N/A	1000	< 2.0	0.45	< 2.0	< 2.0	1.0 J	< 2.0
VOCs	Chloromethane (µg/l)	N/A	190	< 2.0	< 2.0	0.39 J	< 2.0	< 2.0	< 2.0
	Isobutyl alcohol (ug/l)	N/A	11000	< 100	9.2	< 100	< 100	< 100	< 100
	Methylene chloride (ug/l)	N/A	5	< 2.0	< 2.0	< 2.0	2.6	< 2.0	< 2.0
	4-methyl-2-pentanone(μg/l)	15	2000	< 20	5.9	4.4 J	4.6 J	3.3 J	1.6 J
	Toluene (ug/l)	10,000	1000	< 2.0	< 2.0	< 2.0	< 2.0	1.0 J	< 2.0
	Antimony (mg/l)	N/A	0.006	< 0.060	< 0.060	< 0.060	0.0026 B,J	< 0.060	.0029B
-	Arsenic (mg/l)	0.0258	0.01	0.011	0.0091 B	0.0055 B	0.0053 B	.0063 B	0.0107
	Beryllium (mg/l)	0.0055	0.004	< 0.005	< 0.005	< 0.005	0.0012 B,J	< 0.005	< 0.005
Matala	Chromium (mg/l)	0.208	0.1	0.012	< 0.005	< 0.005	< 0.005	.0025 B	< 0.010
Metals	Nickel (mg/l)	0.86	0.73	0.04	0.0262 B	0.0312 B	0.026 B	.0270 B	.0296 B
-50	Lead (mg/l)	0.19	0.015	0.011	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
2.3	Thallium (mg/l)	N/A	0.002	< 0.010	0.0057 B	< 0.010	< 0.010	.0062 B	.0058 B,
		1.27	11	0.11	0.0242	0.006 B	0.0107 B	.0126 B,J	.0181 B

Table includes results for detected compounds only

Note: B denotes a Consitiuent detected in Method Blank

J denotes a Constitiuent detected between the MDL and the RL

Deep Well, Perched Off-site, Perched On-site EPC values obtained from Risk Assessment

Metals listed are dissolved (filtered) metals

EPC = Exposure Point Concentration from EE/CA

N/A = Constituent not detected during Risk Assessment Calcualtions and therefore no EPC applies

Bold Values indicates an EPC exceedance.

Highlighted values indicate an MCL exceedance

Table 5 (continued) Greiners Lagoon Historic Detection Summary Table Shallow Off-site Wells

				MW-12					
	Constituent	EPC	MCL	1998	2006	2007	2008	2009	2010
- 177	Acetone (µg/l)	2,750	22000	19	15 B	38	8.7 J	12 J	9.1 J
	2-Butanone (µg/l)	N/A	7100	< 20	< 20	1.7 J	< 20	< 20	< 20
V00-	Chloromethane (µg/l)	N/A	190	< 2.0	< 2.0	0.99 J	< 2.0	< 2.0	< 2.0
VOCs	Methacrylonitrile (μg/l)	N/A	1	< 4.0	< 4.0	0.62 J	< 4.0	< 4.0	< 4.0
	Methylene Chloride	N/A	5	< 2.0	< 2.0	< 2.0	2.2	< 2.0	< 2.0
	4-methyl-2-pentanone(μg/l)	15	2000	15	7.7	0.91 J	< 20	< 20	< 20
SVOCs	bis-2-ethylhexyl phthalate (µg/l)	N/A	6	< 40	22	< 40	4.5 J,B	< 40	6.7 B, J
W. Ja	Arsenic (mg/l)	0.0258	0.01	< 0.010	< 0.010	0.0054 B	< 0.010	< 0.010	.0065 B
	Chromium (mg/l)	0.208	0.1	0.023	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
	Copper (mg/l)	0.574	1.3	0.029	0.0047 B	.0055 B	< 0.025	< 0.025	< 0.025
Metals	Nickel (mg/l)	0.86	0.73	< 0.040	0.046	0.0432	0.040	< 0.040	0.0053
	Lead (mg/l)	0.19	0.015	0.014	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
	Thallium (mg/l)	N/A	0.002	< 0.010	0.0048 B	0.0076 B	0.049 B	< 0.010	.0093 B, c
	Zinc (mg/l)	1.27	11	0.13	0.0109 B	0.0070 B	0.0152 B,J	< 0.020	.0134 B
5.77			Fall of	MW-13		2.00		Description of the last	
	Constituent	EPC	MCL	1998	2006	2007	2008	2009	2010
	Acetone (µg/l)	2,750	22000	4,000	5.4 B	12	7.6 J, B	18 J	21
VOCs	Isobutyl alcohol	N/A	11000	< 100	8.5	< 100	< 100	< 100	< 100
	4-methyl-2-pentanone(µg/l)	15	2000	< 20	0.38	1.1 J	.054 J	1.3 J	1.3 J
	Arsenic (mg/l)	0.0258	0.01	0.039	0.0048 B	0.0047 B	.0063 B	0.0221	0.0234
	Chromium (mg/l)	0.208	0.1	0.039	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
	Copper (mg/l)	0.574	1.3	0.08	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Metals	Nickel (mg/l)	0.86	0.73	0.084	0.0034 B	< 0.040	.0033 B	.0125 B	.0112 B
	Lead (mg/l)	0.19	0.015	0.037	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
	Thallium (mg/l)	N/A	0.002	< 0.010	< 0.010	< 0.010	< 0.010	.0051 B	< 0.010
	Zinc (mg/l)	1.27	11	0.24	0.0068 B	< 0.020	< 0.020	.0098 B,J	< 0.020
			Phonon	MW-14		THE PARTY			
	Constituent	EPC	MCL	1998	2006	2007	2008	2009	2010
	Acetone (µg/l)	2,750	22000	< 20	2 B	4.2 J	1.4 J, B	4.5 J	13
	2-Butanone (µg/l)	N/A	7100	< 20	<10	<10	< 100	< 20	0.57 J
VOCs	Isobutyl alcohol	N/A	11000	< 100	6.4	< 100	< 100	< 100	< 50
	4-methyl-2-pentanone(μg/l)	15	2000	< 20	< 20	0.63 J	< 20	< 20	0.68 J
	Arsenic (mg/l)	0.0258	0.01	0.027	< 0.010	< 0.010	< 0.010	.0088 B	0.0108
	Chromium (mg/l)	0.208	0.1	0.023	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
	Copper (mg/l)	0.574	1.3	0.065	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Metals	Nickel (mg/l)	0.86	0.73	0.066	0.0037 B	< 0.040	0.0064 B	.0157 B	.0195 B
	Lead (mg/l)	0.19	0.015	0.029	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
	Thallium (mg/l)	N/A	0.002	< 0.010	< 0.010	< 0.010	< 0.010	.0048 B	.0091 B, J
-	Zinc (mg/l)	1.27	11	0.21	< 0.020	< 0.020	< 0.020	.0118 B,J	.0051 B
200			(Internal)	MW-15	7014	TATE OF STREET	7.00	COLUMN TO SERVE	
									0010
	Constituent	EPC	MCL	1998	2006	2007	2008	2009	2010
VOCs	Constituent Acetone (ug/l)	EPC 2.750	MCL 22000	1998 NW	2006	2007 4.2.J	2008	2009	2010
VOCs	Acetone (µg/I)	2,750	22000	NW	< 10	4.2 J	< 10	< 10	1.1 J
VOCs Metals									

Table includes results for detected compounds only

Note: B denotes a Consitiuent detected in Method Blank

J denotes a Constituent detected between the MDL and the RL

Deep Well, Perched Off-site, Perched On-site EPC values obtained from Risk Assessment

Metals listed are dissolved (filtered) metals

EPC = Exposure Point Concentration from EE/CA

N/A = Constituent not detected during Risk Assessment Calcualtions and therefore no EPC applies

Bold Values indicates an EPC exceedance.

Highlighted values indicate an MCL exceedance

NW = New well installed in 2006 - no data available for 1998

Appendix A 2010 Site Inspection Logs

EBUFFER® INSPECTION LOG

Site de	escription: Name: <u>Greiners Lagran</u>	
_	Location: Fremon Ott	
Date:		1.4
Inspe	ctor: Name: <u>Sura N WOOO</u> Title: <u>PM</u> Company: <u>ER</u>	<u></u>
	ner conditions (sunny, rainy, temperature, etc.): SUMNY, COLD	· · · · · · · · · · · · · · · · · · ·
	nd conditions (saturated, moist, dry, etc.): <u>Covered whight Sho</u> rstory conditions (grass height, weed density, etc.): <u>dor moint win</u>	140
Ondo	story conditions (grass neight, wood density, etc.).	
Site co	onditions:	
1. Ha	as the surface been disturbed by rutting, erosion channels, tire tracks, settlement,	etc.? Yes No
2. Aı	re there any indications of vandalism or trespassing? Yes/No	
3. Ha	ave the tree planting trenches, tree planting holes, or other areas settled below gra	ade? Yes/No
4. Is	there ponded water at the site? Yes No as designed, frozen	•
5. Is	significant erosion taking place at the site? Yes No	
6. H	ave the number of live/dead trees changed since the last inspection? Yes/No	
7. Do	o the leaves look eaten? Yes/No N/A dormant	
8. Do	o the leaves look discolored? Yes/No NIA dormant	
9. Do	o the leaves look wilted or curled? Yes/No NIA dormant	
10. Ha	as the outer bark been damaged by deer rubbing, rabbit gnawing, equipment dam	age, etc.? Yes(No)
11. Do	o the tips of the branches look eaten? Yes No	
12. Aı	re there visible animal burrows next to the trees? Yes No	
13. Aı	re there visible insects on the tree bark or on the leaves (check the underside)? Y	es/No
	re there holes in the bark, oozing sap, wood shavings, or other characteristics of les No	oorer activity?
15. Aı	re there patches of dead grass? Yes No	
16. Do	o the trees have leaves? Yes No dormant - winter	
17. Aı	re the trees losing their leaves? Yes No	
18. Aı	re new buds starting to loosen? Yes No	
EBuff	fer [®] Inspection Plan Page 1	Copyright [©]

Appendix B
19. Does the grass look green and healthy? Yes/No Na-dormant
20. How tall is the grass (in inches)? η
If the answer to any of the first 15 questions was 'yes', please explain in detail: Winter - tyels and grass are downant
Maintenance performed since the last inspection: <u>animal burnows repaired</u> NO signs of new burnows
Comments or additional observations: Was on 8ite for drum removal Associated whannual sampling (i.e. non haz purge water)
Recommended corrective actions: ND NL
Action taken: Jum removal (2 W HD, 3 empty)

Action taken by: Name: PSC

Date:

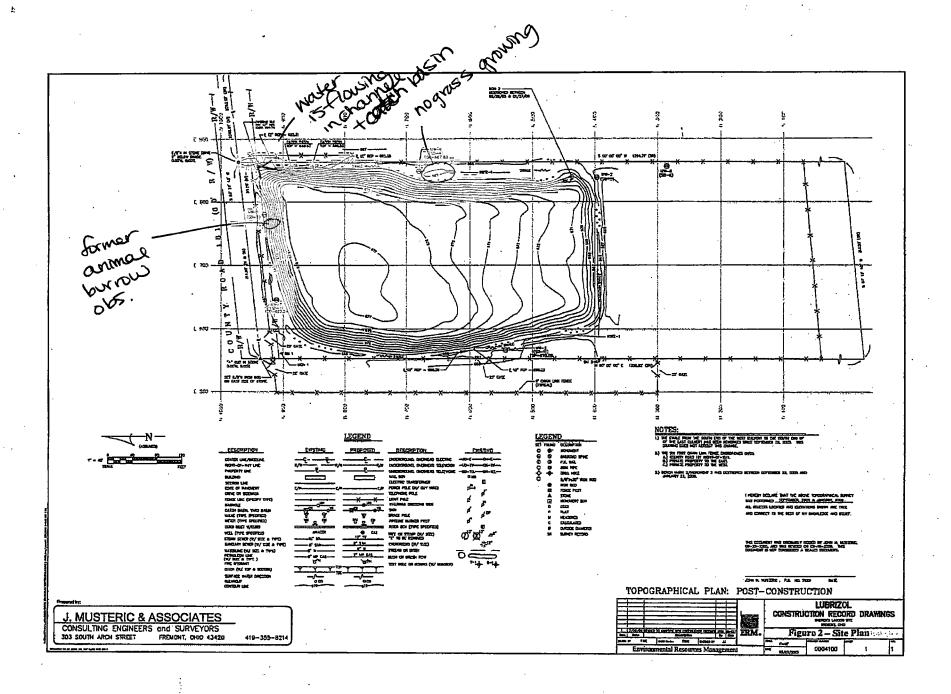
GREINER'S LAGOON O&M INSPECTION LOG

	te: 5/21/2010 Time: 11— (AM)PM spector: Name: Sarah Wood Title: PM Company: ERM
Ter Wi Gro Un	cather conditions (sunny, rainy, etc.): Cloudy (just stopped vaining) mperature °F 50's nd Direction N Wind Speed (estimated) 1-2 mg/n ound conditions (saturated, moist, dry, etc.): Saturated derstory conditions (grass height, weed density, etc.): partially mowed - top 2-3", Slags 1-2"
Sit	e conditions:
1.	Has the surface been disturbed by rutting, erosion channels, tire tracks, settlement, etc.? Ver No Grass Mowed Vesterday
2.	Are there any indications of vandalism or trespassing? Yes No
3.	Is the fence secure? Yes/No
4.	Are there any breaches or open gates in the fence? Yes/No
5.	Have the tree planting trenches, tree planting holes, or other areas settled below grade? Yes/No
6.	Is there ponded water at the site? Yes No Heavy Rain this A.M.
7.	Is water flowing to the catchbasin at the northeast corner? Yes No
8.	Are there any seeps? Yes/No If yes, provide locations in following section.
9.	Is there any visible dust in the air? If yes, provide locations in following section. NO
10.	Is significant erosion taking place at the site? Yes No
11.	Have the number of live/dead trees changed since the last inspection? Yes No
12.	Do the leaves look eaten? Yes No
13.	Do the leaves look discolored? Yes/No
14.	Do the leaves look wilted or curled? Yes No
15.	Has the outer bark been damaged by deer rubbing, rabbit gnawing, equipment damage, etc.? Yes No
	Do the tips of the branches look eaten? Yes No
17.	Are there visible animal burrows? (FeyNo Believed to be mactive (filled with water)
	Are there visible insects on the tree bark or on the leaves (check the underside)? Yes No
EB	uffer [®] Inspection Plan Page 1 Copyright [©]

Appendix B
19. Are there holes in the bark, oozing sap, wood shavings, or other characteristics of borer activity? Yes No
20. Are there patches of dead grass? Yes No
21. Do the trees have leaves? Yes No
22. Are the trees losing their leaves? Yes No
23. Are new buds starting to loosen? Yes No
24. Does the grass look green and healthy? Yes No
25. How tall is the grass (in inches)?
Vaus. Top 2-3", sides 12-24"
If the answer to any of the first 23 questions was 'yes', please explain in detail:
water is ponded in certain areas of the Site due to havy rain earlier this A.M. A former animal burrow was observed near MW-1, but appears to be macrive (no tracks, filled WI Water)
Maintenance performed since the last inspection: 2/3rd of Site has been moved. Subcontractor will complete rest of Site once it dries up, per a phone conversation yesterday.
Comments or additional observations: Next inspection - need to continue to look for animal burrows
Recommended corrective actions: None at this time
Action taken: photos + video taken

Action taken by: Name: Sarah Woock Date: 5 /21/2010

EBuffer® Inspection Plan


Page 2

Copyright [©]

Appendix B

NOTES:

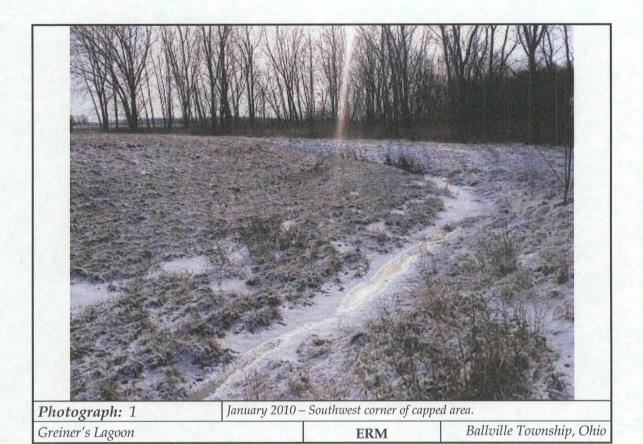
See attached Figure for more details

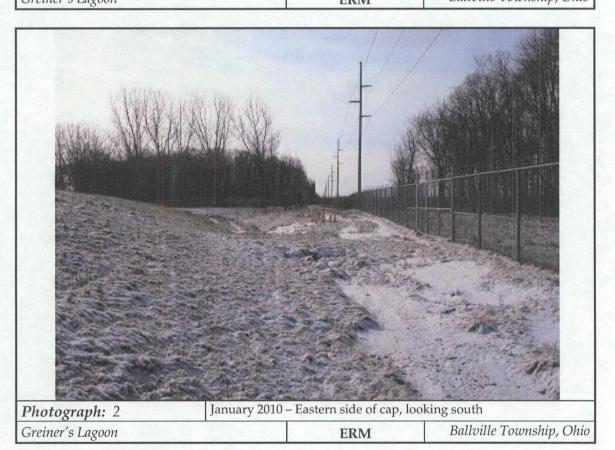
GREINER'S LAGOON O&M INSPECTION LOG

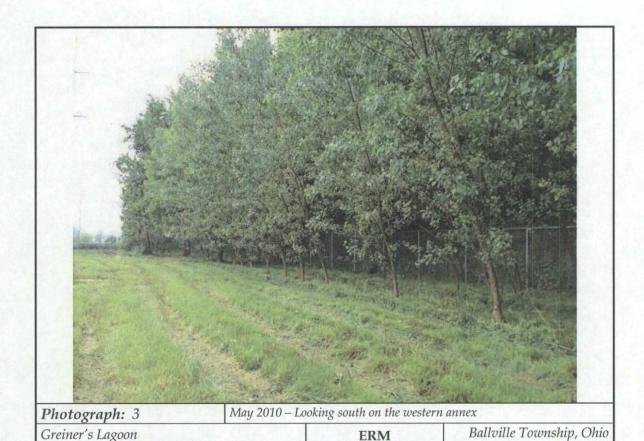
Date: 9 / 7 / 2010 Time: 1130 AM/PM
Inspector: Name: AARON FREDERICYTitle: GEORGET Company: ERM
Weather conditions (sunny, rainy, etc.): Sonny Temperature °F 75°F Wind Direction N-NE Wind Speed (estimated) 5-10mph Ground conditions (saturated, moist, dry, etc.): Day Understory conditions (grass height, weed density, etc.): 1 - 2'
Site conditions:
1. Has the surface been disturbed by rutting, erosion channels, tire tracks, settlement, etc.? Ves No
2. Are there any indications of vandalism or trespassing? Yes
3. Is the fence secure? Yes No
4. Are there any breaches or open gates in the fence? Yes No
5. Have the tree planting trenches, tree planting holes, or other areas settled below grade? Yes No
6. Is there ponded water at the site? Yes No
 7. Is water flowing to the catchbasin at the northeast corner? Yes No. 8. Are there any seeps? Yes/No. If yes, provide locations in following section.
9. Is there any visible dust in the air? If yes, provide locations in following section.
10. Is significant erosion taking place at the site? Yes No
Some BAKE AREAS ON THE EAST SIDE OF CAR. 11. Have the number of live/dead trees changed since the last inspection? Yes/NO
12. Do the leaves look eaten? Yes/No Some Look EATEN BUT WIT UNUSUAL FOR THE TIME OF YEAR. 13. Do the leaves look discolored? Yes/No
14. Do the leaves look wilted or curled? Yes/No
15. Has the outer bark been damaged by deer rubbing, rabbit gnawing, equipment damage, etc.? Yes No
16. Do the tips of the branches look eaten? Yes/No
17. Are there visible animal burrows? Yes No
18. Are there visible insects on the tree bark or on the leaves (check the underside)? Yes No
EBuffer® Inspection Plan Page 1 Copyright ©

Appendix B	
19. Are there holes in the bark, oozing sap, wood shavings, or other characteristics of borer activity?	
20. Are there patches of dead grass? Yes No	
21. Do the trees have leaves? Yes/No	
22. Are the trees losing their leaves? Yes No	
23. Are new buds starting to loosen? Yes No	•
24. Does the grass look green and healthy Yes No	
25. How tall is the grass (in inches)? /Z - 2 4"	
If the answer to any of the first 23 questions was 'yes', please explain in detail: THE PATCHES OF DEAD CHEASS ARE COUNTED ON THE EAST SIDE OF THE LANDFILL. ALGO LOCATED ON THE EAST SIDE ARE 6-8 ANIMAL BURKE	<u>د</u> <u>م</u> دع
	_
	-
Maintenance performed since the last inspection: CAR AND SURROUNDING AREA MOWED WITHIW Z MONTHS.	- -
Comments or additional observations: Worn on transping Anima Ls.	- .
	- -
Recommended corrective actions: None	-
	- .
	•

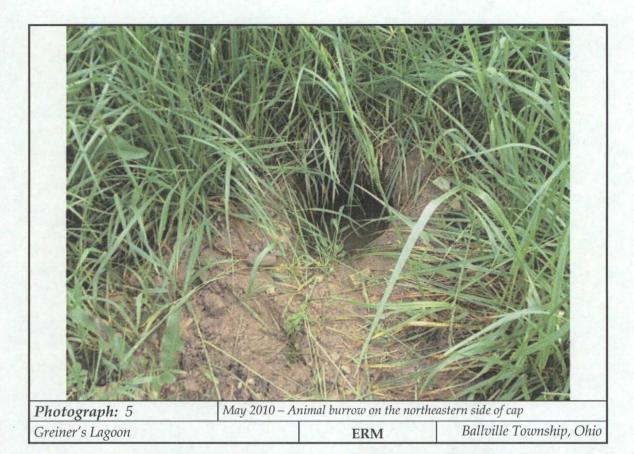
Action taken by: Name: AARON FREDERICY Date: 9/7/10

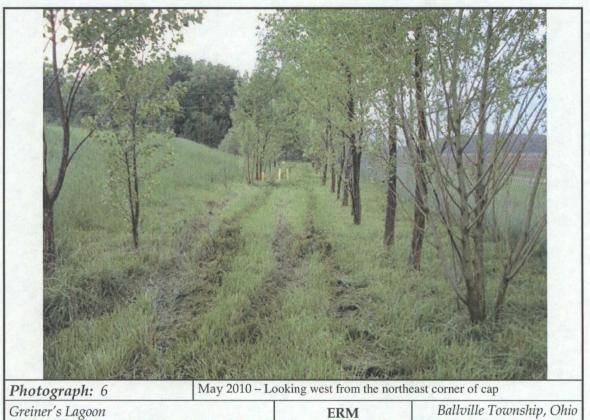

GREINER'S LAGOON O&M INSPECTION LOG

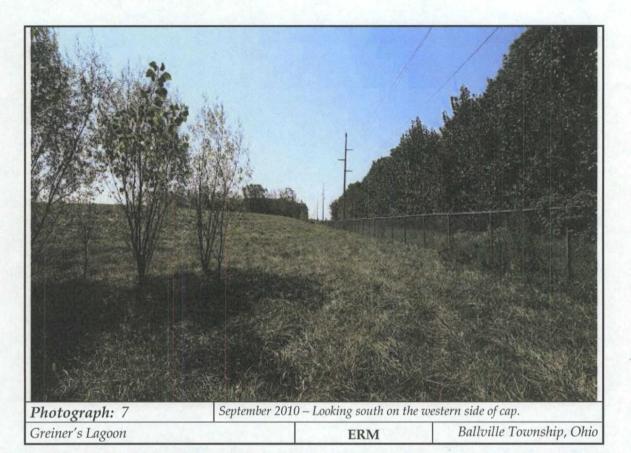

Date: 11 / 15 / 2810 Time: /200 AM/PM Inspector: Name: AREN TREDERLY Title: CHOLOGIST Company: ERM
Inspector: Name: AREN INEDERLY Title: CHOLOGIST Company: ERW
Weather conditions (sunny, rainy, etc.): Sony Temperature of Sor Wind Speed (estimated) South
Ground conditions (saturated, moist, dry, etc.):MO157
Understory conditions (grass height, weed density, etc.): /2-24"
Site conditions:
1. Has the surface been disturbed by rutting, erosion channels, tire tracks, settlement, etc.?
2. Are there any indications of vandalism or trespassing? Yes No
3. Is the fence secure? Yes No
4. Are there any breaches or open gates in the fence? Yes
5. Have the tree planting trenches, tree planting holes, or other areas settled below grade? Yes No
6. Is there ponded water at the site? Yes No
7. Is water flowing to the catchbasin at the northeast corner?
8. Are there any seeps? Yes No If yes, provide locations in following section.
9. Is there any visible dust in the air? If yes, provide locations in following section.
10. Is significant erosion taking place at the site? Yes/N
Some Bear Arear East of CAP. 11. Have the number of live/dead trees changed since the last inspection? Yes No
12. Do the leaves look eaten? Yes No
13. Do the leaves look discolored? Yes No
14. Do the leaves look wilted or curled? Yes No
15. Has the outer bark been damaged by deer rubbing, rabbit gnawing, equipment damage, etc.? Yes No
16. Do the tips of the branches look eaten? Yes No
17. Are there visible animal burrows? Yes No
18. Are there visible insects on the tree bark or on the leaves (check the underside)? Yes/No
FRuffer® Inspection Plan Page 1 Convergit ©

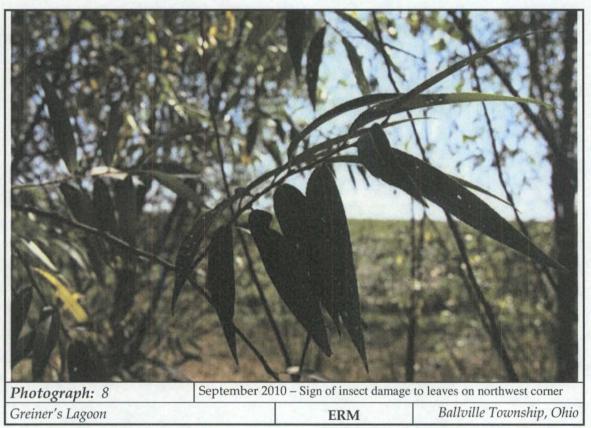

Appendix B	Ap	pen	dix	B
------------	----	-----	-----	---

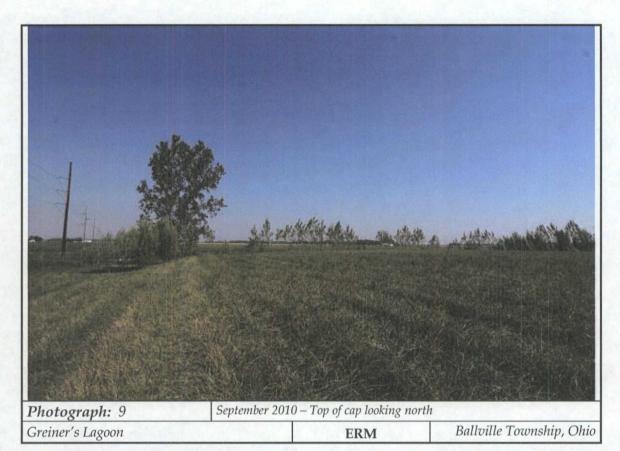
19. Are there holes in the bark, oozin	g sap, wood shavings, o	or other characteristics	s of borer activity?
20. Are there patches of dead grass?	Ŷej/No		
21. Do the trees have leaves? Yes	•	•	
22. Are the trees losing their leaves?	(res)No		
23. Are new buds starting to loosen?	Yes/No	,	
24. Does the grass look green and her	althy? Yes/No		
25. How tall is the grass (in inches)? $12-24'$		·	
If the answer to any of the first 23 of		ease explain in detail	
DEAD GRASS AND	·		
			•
Maintenance performed since the last HARVESTED. Comments or additional observations			NEW LOCKS,
Recommended corrective actions:	None		
Action taken: No∼∈	· · · · · · · · · · · · · · · · · · ·		
Action taken by: Name:	in Fredericy	Date:	1 15 110
EBuffer® Inspection Plan	Page 2		Copyright [©]

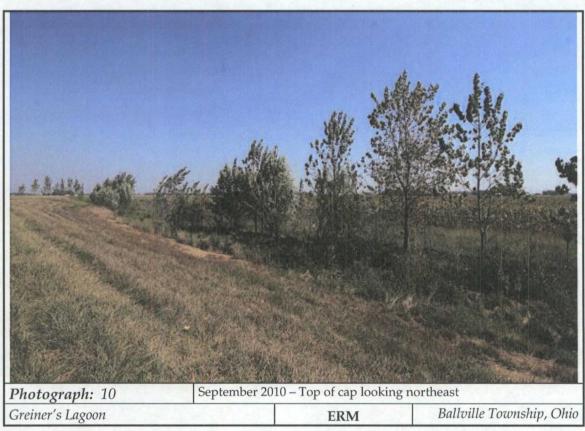

Appendix B Site Photographs

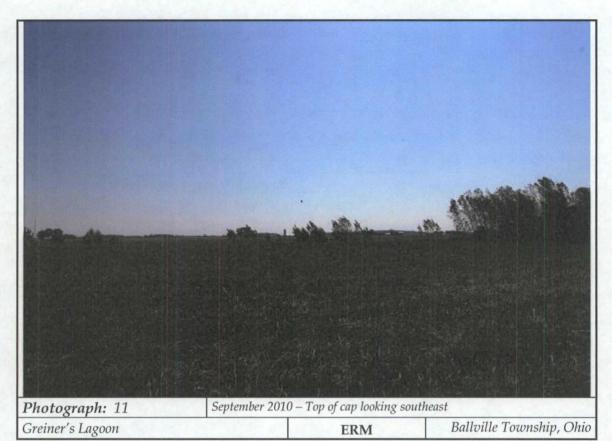


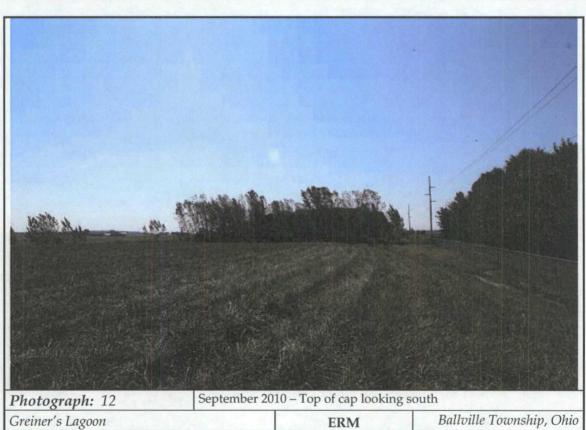


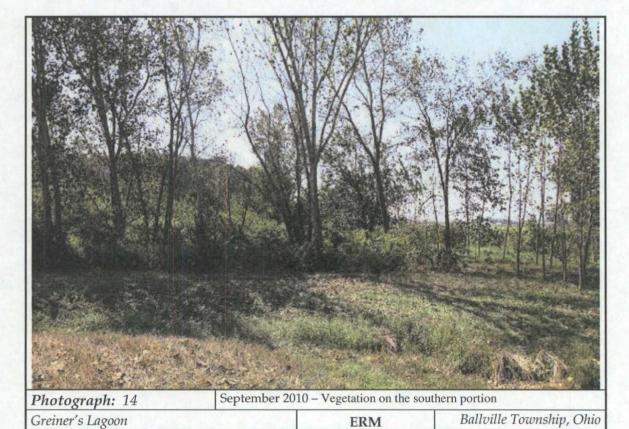


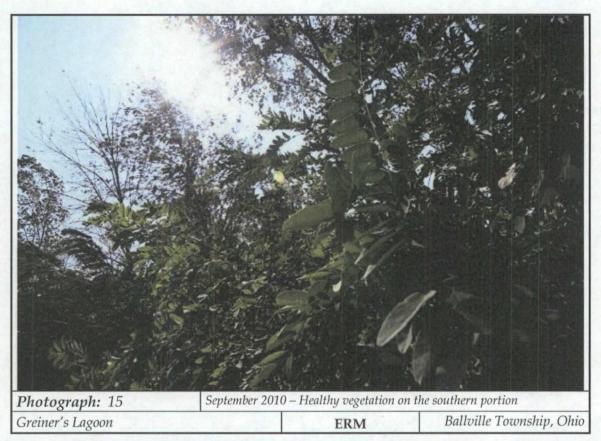


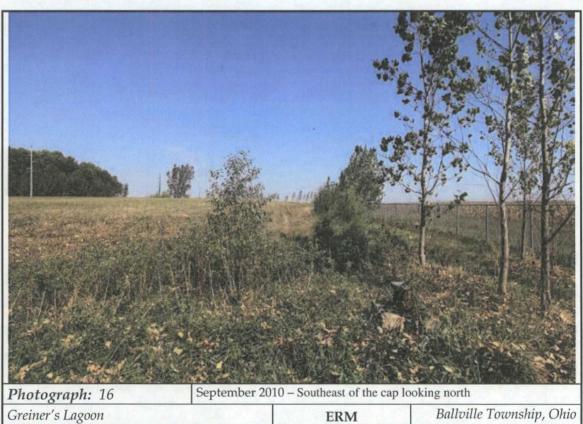


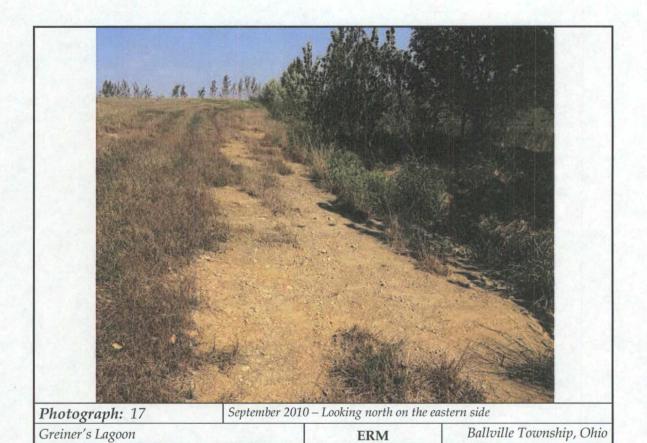


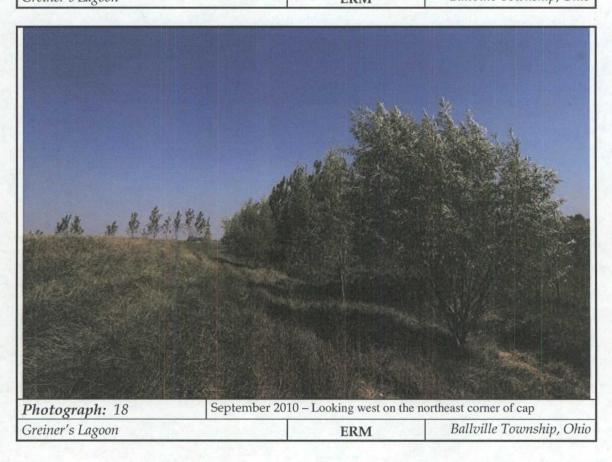


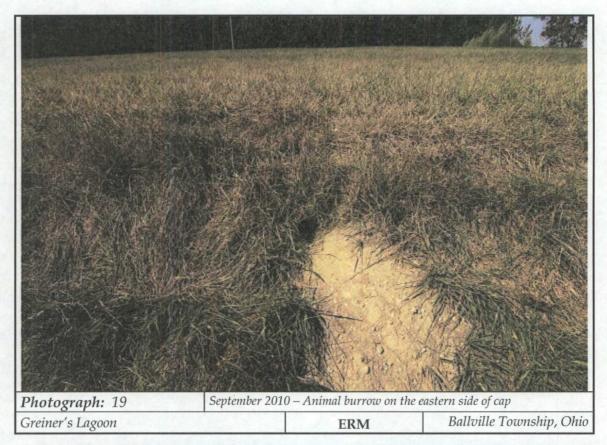









Photograph:13September 2010 – Looking south on the west side (MW-5 in foreground)Greiner's LagoonERMBallville Township, Ohio



Appendix C Field Sampling Forms

GROUNDWATER SAMPLING FIELD DATA FORM Well Identification: MW-1

ERM 30775 Bainbridge Road Suite 180 Solon, OH 44139

21.62

Project: Greiners Lagoon		Sample Date:	11/18/2010				
Project Number:	0047810	Sample Time:	0942				
Screened Interval:	36-46 bgs	Initial Depth to Water (ft):	20.93	Water Volume/ft. for:			
Measured Well Depth	(ft): 49.57	Length of Water Column (ft):	28.64	2" diameter well = 0.163 x LWC 4" diameter well = 0.653 x LWC			
Well Inner Diameter (in): 2		1 Well Volume (gal): 4.67	x 3 = 14.0	6" diameter well = 1.469 x LWC			
Samplers:	Aaron Fredericy	Sampler Affiliation:	ERM				
Purge Method/Equipm	ent:		Bailer				
Stabilization Test Equipment:		Hanna 991301 & LaMotte 2020					
Sampling Method/Equ	ipment:	QED SamplePro Micropurge Pump					

				Stabili	zation Test:				
Date	Time	Cumulative Volume (gal)	Depth to Water (ft)	рН	Specific Conductance (µS/cm)	Turbidity (NTU)	Dissolved Oxygen (ppt)	Temperature (C)	ORP (mV)
11/18/2010	08:13	Initial	20.86	7.17	620	-7.12	-	12	-
	08:28	5.0	22.71	7.54	640	7.60	-	11.1	
	08:44	10.0	22.75	7.47	670	8.13	-	10.8	
	08:59	14.0	22.83	7.50	670	3.39	-	11.0	-
Low Flow									
11/18/2010	09:25	14.0	20.65	7.48	720	400		10.5	-
	09:29	14.5	21.61	7.46	780	29.2	-	11.0	
	09:33	15.0 ·	21.60	7.39	700	13.2	-	11.0	-
	09:37	15.5	21.62	7.38	670	6.63	-	11.0	-
	09:42	16.0	21.62	7.37	660	4.95	-	11.0	-

Analysis/Parameter	Container/Volume	Preservative/Preparation
VAP VOCs	40 mL Vials	HCl
TAL Metals (unfiltered)	1000 mL Poly	HNO ₃
TAL Metals (filtered)	1000 mL Poly	HNO ₃
SVOCs	1000 mL Amber	None

16.0

Remarks: Duplicate Taken Recalibration: 7.0 STD @ 6.98 / 12880 STD @ 12850

Volume Purged Prior to Sample Collection:

Top of Pump: 45.11 ft from TOC

Depth to Water during Sample Collection:

Remarks:

Top of Pump: 46.8 ft from TOC

GROUNDWATER SAMPLING FIELD DATA FORM Well Identification: <u>MW-2</u>

ERM 30775 Bainbridge Road ... Suite 180 Solon, OH 44139

Project:	Greiners I	_agoon		Sampl	e Date: 1	1/14/20	10		
Project Nu	mber:	0047810		Samp	le Time: 10	040			
Measured Well Depth (ft): 60.37 Length			-	ater (ft): 22 olumn (ft): al): 6.16		2" dia 4" dia	ater Volume/ft. meter well = 0.163 meter well = 1.469	S x LWC S x LWC	
Samplers:		Aaron Frederic	у	Sample	r Affiliation:		ERM		
Purge Metho Stabilization Sampling Me	Test Equipr	ment:			Hanna 99130				
Date	Time	Cumulative Volume (gal)	Depth to Water (ft)	рН	Specific Conductance (µS/cm)	Turbid (NTU	*	Temperature (C)	ORP (mV)
11/14/2010	09:17	Initial	22.70	11.46	1280	25.2	-	11.1	
	09:33	5.0	22.76	11.35	1200	33.6		10.3	-
	09:47	10.0	22.79	8.45	710	22.6	<u>-</u>	10.4	-
	10:00	15.0	22.77	7.85	730	. 12:8	-	. 10.5	<u></u>
	10:11	18.5	22.77	7.64	720	10.8	7	11.1	
Low Flow			<u> </u>						
11/14/2010	10:22	18.5	22.70	7.69	750	7.57	-	10.1	-
	10:28	19.0	22.81	7.59	730	13.0		11.1	-
	10:32	19.5	22.75	7.53	720	12.3	· -	11.2	-
	10:36	20.0	22.75	7.53	720	7.07	-	10.8	-
	10:40	20.5	22.75	7.60	720	5.72	<u></u>	10.7	-
Volume Purg	ged Prior to	Sample Collection	n:20.5	 .	Depth to	Water dur	ing Sample Collection	on: 22	2.75
	Analys	is/Parameter		Con	tainer/Volume		Preservati	ve/Preparation	
	VA	P VOCs		4	0 mL Vials			HCI	
		als (unfiltered)			000 mL Poly			INO ₃	
		etals (filtered)			000 mL Poly			HNO ₃	
SVOCs .				. 1000 mL Amber None					

MS/DS Collected

GROUNDWATER SAMPLING FIELD DATA FORM

Well Identification: <u>MW-3</u>

ERM 30775 Bainbridge Road Suite 180 Solon, OH 44139

ial Depth to W ogth of Water C Vell Volume (g	ater (ft): 22 Column (ft): al): 3.99 er Affiliation:	x 3 = 12.0	2" dia 4" dia	ater Volume/ft. meter well = 0.163 meter well = 1.469	x LWC x LWC
ngth of Water C Well Volume (g	Column (ft): al): 3.99 er Affiliation:	24.5 x 3 = 12.0	2" dia 4" dia 6" dia	meter well = 0.163 meter well = 0.653	x LWC x LWC
Sample	er Affiliation:			meter well = 1.469	XLWC
	В	ailer	ERM		
		ailer			
	Hoppo 00120				
	панна 99130	1 & LaMotte 2	2020		
	QED SampleP	ro Micropurge	Pump		
Stabili	zation Test:				
i nH	Specific Conductance (µS/cm)	Turbidity (NTU)	Dissolved Oxygen (ppt)	Temperature (C)	ORP (mV)
8.99	710	3.53	-	12.7	-
8.20	770	5.02	-	11.7	-
8.13	780	7.36	-	11.6	-
8.19	790	10.28		12	-
7.99	780	5.22	-	11.3	-
10.8	780	4.98		11.3	
7.99	780	3.15		11.2	-
.5	Depth to	Water during S	ample Collection	on:22	2.11
Con	tainer/Volume		Preservati	ve/Preparation	
- 1					
10	000 mL Poly	,	F	INO ₃	
100	00 mL Amber			None	
 	Top of Pump:	39.41 ft from T	roc		
	8.99 8.99 8.20 8.13 8.19 7.99 8.01 7.99	Hanna 99130 QED SampleP	Stabilization Test: Specific Conductance (μS/cm) S.99 710 3.53 8.20 770 5.02 8.13 780 7.36 7.99 780 5.22 8.01 780 4.98 7.99 780 3.15 7.99 780 3.15 7.99 780 3.15 7.99 780 3.15 7.99 780 3.15 7.99 780 3.15 7.99 780 3.15 7.99 780 3.15 7.99 780 3.15 7.99 780 3.15 7.99 780 3.15 7.99 780 3.15 7.99 780 3.15 7.99 780 3.15 7.99 780 3.15 7.99 780 3.15 7.99 7.99 7.90 7.9	Hanna 991301 & LaMotte 2020 QED SamplePro Micropurge Pump	Hanna 991301 & LaMotte 2020 QED SamplePro Micropurge Pump

GROUNDWATER SAMPLING FIELD DATA FORM Well Identification: $\underline{MW-4}$

ERM 30775 Bainbridge Road Suite 180 Solon, OH 44139

Project:	Greiners L	agoon		Samp	le Date: 1	1/18/2010	•		
Project Nu	mber:	0047810		Samp	le Time: 1	700		-	
Screened Into		4-14 bgs : 15.15		•	ater (ft):9	9.55 5.6	2" dia	meter well = 0.163	x LWC
Well Inner D	• '	2					4 diameter well = 0.053 x LWC		
Samplers:	,	Aaron Frederic	;y	Sample	er Affiliation:		ERM		
Purge Metho	d/Equipment	:			В	ailer			
Stabilization	Test Equipm	ent:			Hanna 99130	01 & LaMotte 2	2020	1	
Sampling Me	ethod/Equipn	nent:			QED SampleP	ro Micropurge	Pump	•	
				Stabili	zation Test:				
Date	Time	Cumulative Volume (gal)	Depth to Water (ft)	рН	Specific Conductance (µS/cm)	Turbidity (NTU)	Dissolved Oxygen (ppt)	Temperature (C)	ORP (mV)
11/18/2010	13:25	Initial	9.55	6.70	2600	4.32	<u></u>	13.2	-
	13:30	2.0	13.51	6.76	2480	166		12.9	-
	13:35	3.0	DRY				-	-	-
11/18/2010	17:00	3.0	10.83	6.71	2660	69.2	-	10.4	-
		<u> </u>		 					
-									
Volume Purg	ged Prior to S	ample Collection	n:3.0		Depth to	Water during S	Sample Collection	on: 10	0.83
	Analysi	s/Parameter		Con	tainer/Volume		Preservati	ve/Preparation	·
		P VOCs			0 mL Vials	ę		HCl	
		ils (unfiltered)			000 mL Poly	*		INO ₃	
		tals (filtered) VOCs			000 mL Poly 00 mL Amber			INO ₃ ,	
Remarks:									
	n: 7.0 STD @	7.04 / 12880 @	12860		Top of Pump:	13.90 ft from T	OC		

GROUNDWATER SAMPLING FIELD DATA FORM Well Identification: <u>MW-5</u>

ERM 30775 Bainbridge Road Suite 180 Solon, OH 44139

Project:	Greiners L	agoon		Samp	le Date: 1	1/19/2010			
Project Nu	mber:	0047810		Sample Time:		130			
Screened Into Measured W Well Inner D	ell Depth (ft)	4-14 bgs : 17.12	Length	-	olumn (ft):8		2" dia - 4" dia	ater Volume/ft meter well = 0.163 meter well = 0.653 meter well = 1.469	3 x LWC
Samplers:		Aaron Frederic	у	Sample	r Affiliation:		ERM		
Purge Metho	d/Equipment	:			В	ailer		· · -	
Stabilization	Test Equipm	ent:	·			1 & LaMotte 2			
Sampling Mo	ethod/Equipn	nent:			QED SampleP	ro Micropurge	Pump		
	1 &			Stabili	zation Test:		<u></u>		
Date	Time	Cumulative Volume (gal)	Depth to Water (ft)	рН	Specific Conductance (µS/cm)	Turbidity (NTU)	Dissolved Oxygen (ppt)	Temperature (C)	ORP (mV)
11/18/2010	14:25	Initial	8.34	7.62	6050	51.4		13.9	-
	14:30	2.0	11.76	7.64	6090	41.1		13.9	-
	14:37	3.5	13.29	7.65	6150	39.2	-	14.2	-
	14:39	4.0	DRY						,
Left to R	echarge								
11/19/2010	11:30	Initial	8.22	8.14	5940	52.00	-	13.8	-
_									
Volume Purg	ged Prior to S	ample Collection	n:4.0		Depth to	Water during S	Sample Collection	on:8	.14
	Analysi	s/Parameter		Con	tainer/Volume		Preservati	ve/Preparation	
,		P VOCs			0 mL Vials			HCl	
		ls (unfiltered)			000 mL Poly		· · · · · · · · · · · · · · · · · · ·	INO ₃	1 ,
		tals (filtered) /OCs			000 mL Poly 00 mL Amber			INO ₃ None	
	<u>.</u>			100	, and annou				
Remarks: Recalibration	n: 7.0 STD @	7.02 / 12880 ST	TD @ 12890		Top of Pump:	15.92 ft from T	ос		

GROUNDWATER SAMPLING FIELD DATA FORM Well Identification: <u>MW-6</u>

ERM 30775 Bainbridge Road Suite 180 Solon, OH 44139

None

Project:	Greiners I	Lagoon		Samp	le Date: 1	1/18/2010	•		
Project Number: 0047810				Samp	le Time: 10	611			
Screened Int					ater (ft):5		-	ater Volume/ft	
	-	t): <u>14.16</u>			Column (ft):		– 4" dia	meter well = 0.653	3 x LWC
Well Inner D	Diameter (in)): 2	1 Wel	l Volume (g	al): 1.34	x 3 = 4.0	6" dia	meter well = 1.469	9 x LWC
Samplers:		Aaron Frederic	c <u>y</u>	Sample	er Affiliation:		ERM		·- ·- ·
Purge Metho	od/Equipmei	nt:			В	ailer			
Stabilization	Test Equip	ment:	•		Hanna 99130	1 & LaMotte	2020		
		ment:			QED SampleP	ro Micropurge	Pump	,	
				Stabili	zation Test:	•			
Date	Time	Cumulative Volume (gal)	Depth to Water (ft)	pH	Specific Conductance (µS/cm)	Turbidity (NTU)	Dissolved Oxygen (ppt)	Temperature (C)	ORP (mV)
11/18/2010	15:05	Initial	5.91	7.20	2480	15.6	-	12.9	
	15:12	2.0	8.11	7.20	2750	34.0	-	12.7	-
	15:19	4.0	11.85	7.42	4570	153.0	-	13.3	-
Low Flow									
11/18/2010	15:55	4.0	6.56	7.49	3750	185.0		10.8	-
	16:01	4.5	7.20	7.55	3230	39.3	-	12.1	-
	16:07	5.0	7.79	7.57	3200	37.4	-	12.1	-
_	16:11	5.5	8.14	7.56	3140	27.4	-	12.1	.
Volume Pur	ged Prior to	Sample Collection	on: 5.5		Depth to V	Vater during S	ample Collection	on:8	.14
	Analysi	is/Parameter		Con	tainer/Volume	-	Preservati	ve/Preparation	 !
	VA	P VOCs		4	0 mL Vials			HCl	
	TAL Met	als (unfiltered)		10	000 mL Poly			łNO ₃	<u> </u>
TAL Metals (filtered)				1000 mL Poly HNO ₃					

1000 mL Amber

Top of Pump: 13.41 ft from TOC

SVOCs

Recalibration: 7.0 STD @ 6.97 / 12880 STD @ 12900

GROUNDWATER SAMPLING FIELD DATA FORM Well Identification: <u>MW-7</u>

ERM 30775 Bainbridge Road Suite 180 Solon, OH 44139

Project: Greiners Lagoon				Samp	le Date: 1	1/18/2010					
Project Nu	mber:	0047810		Samp	le Time: 1	107					
Screened Inte	erval:	4-14 bgs	Initial	Depth to Wa	ater (ft):8	.08		Water Volume/ft. for:			
Measured We	ell Depth (ft): <u>15.15</u>	Length	Length of Water Column (ft): 7.07 2" diameter well = 0.163 x 4" diameter well = 0.653 x							
Well Inner D	iameter (in)	2 .	l Well	Volume (ga	al): 1.15	x 3 = 3.5		6" diameter well = 1.469 x LWC			
Samplers: _		Aaron Frederic	Cy	Sample	er Affiliation:		ERM				
Purge Metho	d/Equipmen	ıt:			В	ailer					
Stabilization						1 & LaMotte 2	2020				
Sampling Me	thod/Equip	· · · · · · · · · · · · · · · · · · ·				ro Micropurge	Pump				
							-:		-		
		1		Stabili	zation Test:		1		1		
Date	Time	Cumulative Volume (gal)	Depth to Water (ft)	рН	Specific Conductance (µS/cm)	Turbidity (NTU)	Dissolved Oxygen (ppt)	Temperature (C)	ORP (mV)		
		T 141 1	7.74	7.20	4720	16.7	-	12.8	-		
11/18/2010	08:43	Initial	7.74	7.30	4720	10.7	-	12.0			
11/18/2010	08:43 08:49	2.5	11.45	7.30	4550	35.5	-	13.1			
11/18/2010			-			-			 -		
11/18/2010 Low Flow	08:49	2.5	11.45	7.3	4550	35.5	-	13.1			
	08:49	2.5	11.45	7.3	4550	35.5	-	13.1			
Low Flow	08:49 08:55	2.5	11.45 14.03	7.3 7.41	4550 4760	35.5 62.2	-	13.1 13.3			
Low Flow	08:49 08:55 10:32	2.5 3.5	11.45 14.03 8.96	7.3 7.41 7.44	4550 4760	35.5 62.2 14.4		13.1 13.3 15.2	-		
Low Flow	08:49 08:55 10:32 10:36	2.5 3.5 3.5 4.0	11.45 14.03 8.96 9.45	7.3 7.41 7.44 7.45	4550 4760	35.5 62.2 14.4 12.5		13.1 13.3 15.2 14.8	-		
Low Flow	08:49 08:55 10:32 10:36 10:43	2.5 3.5 3.5 4.0 4.5	11.45 14.03 8.96 9.45 10.03	7.3 7.41 7.44 7.45 7.45	4550 4760	35.5 62.2 14.4 12.5 8.81		13.1 13.3 15.2 14.8 14.6	-		
Low Flow	08:49 08:55 10:32 10:36 10:43 10:50	2.5 3.5 4.0 4.5 5.0	11.45 14.03 8.96 9.45 10.03 10.67	7.3 7.41 7.44 7.45 7.45 7.38	4550 4760	35.5 62.2 14.4 12.5 8.81 6.44		13.1 13.3 15.2 14.8 14.6 14.8	-		

Analysis/Parameter	Container/Volume	Preservative/Preparation
VAP VOCs	40 mL Vials	HCl ,
TAL Metals (unfiltered)	1000 mL Poly	HNO ₃
TAL Metals (filtered)	1000 mL Poly	HNO ₃
SVOCs	1000 mL Amber	None

Remarks:

Recalibration: 7.0 STD @ 7.05 / 12880 STD @ 12540

Top of Pump: 14.44 ft from TOC

GROUNDWATER SAMPLING FIELD DATA FORM Well Identification: <u>MW-7 (continued)</u>

Project:	Greiners I	_agoon		Samp	ole Date: 1	1/18/2010	•		
Project Nu	mber:	0047810		Samp	ole Time: 11	107			
Screened Into Measured W Well Inner D	ell Depth (ft)		Length	n of Water C	Vater (ft): 8.08 Water Volume/ft. for: Column (ft): 7.07 2" diameter well = 0.163 x LWC 4" diameter well = 0.653 x LWC 6" diameter well = 1.469 x LWC				S x LWC S x LWC
Samplers:		Aaron Frederic	; y	Sampl	er Affiliation:	, 	ERM		
Purge Metho Stabilization Sampling Me	Test Equipn				Hanna 99130	ailer 11 & LaMotte 2 17 o Micropurge			
			·		ization Test:				
Date	Time	Cumulative Volume (gal)	Depth to Water (ft)	pH	Specific Conductance (µS/cm)	Turbidity (NTU)	Dissolved Oxygen (ppt)	Temperature	ORP (mV)
Low Flow					1				
11/18/2010	11:07	6.5	12.87	7.64	4780	6.99	-	14.1	-
	11:15	7.0	13.25	7.74	4860	6.91	-	14.1	-
	11:21	7.5	13.47	772	4780	6.71	-	13.9	-
	11:25	7.75	DRY		-	-	-	-	-
·	12:20	7.75	10.03	- -	-		-	, <u>-</u>	-
Volume Purg	ged Prior to S	Sample Collection	n: 7.75	<u> </u>	Depth to	Water during S	Sample Collection	on: 10).03
	Analys	is/Parameter		· Cor	ntainer/Volume		Preservati	ve/Preparation	
		P VOCs			40 mL Vials			HCI	
	TAL Metals (unfiltered)				000 mL Poly		· · · · · · · · · · · · · · · · · · ·	HNO ₃	
		etals (filtered)	-		000 mL Poly			HNO ₃ None	
		:						. 10115	
Remarks:									

GROUNDWATER SAMPLING FIELD DATA FORM

Well Identification: MW-8

Project:	Greiners L	agoon		Samp	le Date: 1	1/19/2010			•		
Project Nu	mber:	0047810		Samp	le Time: 0	925					
Screened Into	erval:	4-14 bgs	. Initial	Depth to W	ater (ft): 7	<u>'.21</u>		ater Volume/ft			
Measured W	ell Depth (ft):14.6	Lengt	h of Water C	Column (ft):	7.39		meter well = 0.163 meter well = 0.653			
Well Inner D					al): 1.20		6" diameter well = 1.469 x LWC				
Samplers: _		Aaron Frederic	:y	Sample	er Affiliation:		ERM	ERM			
Purge Metho	d/Equipmen	t:		Bailer							
Stabilization	Test Equipm	nent:			Hanna 99130	1 & LaMotte	2020		i		
Sampling Method/Equipment:					QED SampleP	то Місторигде	Pump				
				Stabili	zation Test:						
Date	Time	Cumulative Volume (gal)	Depth to Water (ft)	рН	Specific Conductance (µS/cm)	Turbidity (NTU)	Dissolved Oxygen (ppt)	Temperature (C)	ORP (mV)		
11/18/2010	14:00	Initial	6.95	6.89	4410	55.1	· .	12.2	-		
	14:05	1.0	12.33	6.91	4630	>1000	-	12.2	·-		
	14:09	1.5	DRY		-	- .	-	-	-		
11/19/2010	09:25	Initial	6.45	6.89	3940	152.0		12.7	-		
						·					
Volume Purg	ged Prior to S	Sample Collection	on: <u>1.5</u>		Depth to V	Water during S	ample Collection	on: 6	.45		
,		s/Parameter		Con	tainer/Volume		Preservati	ve/Preparation			
		VOCs			0 mL Vials			HCI			
		ls (unfiltered)			000 mL Poly			INO ₃			
		als (filtered)			000 mL Poly 00 mL Amber			None			
Remarks:											
Nemaiks:					Top of Pump:	13.40 ft from ⁷	roc				

GROUNDWATER SAMPLING FIELD DATA FORM Well Identification: MW 0

ERM 30775 Bainbridge Road Suite 180

Well Identification: MW-9 Suite 180
Solon, OH 44139

i iojeci.	ojeci. Gremers Lagoon										
Project Nu	mber:	0047810		Sample	Time: 1	150					
Screened Inte	erval:	4-14 bgs	Initial	Depth to Wat	er (ft):	3.84	W	ater Volume/ft	for:		
Measured We	. —			-	lumn (ft):	7.96		meter well = 0.163			
Well Inner Di				Volume (gal		x 3 = 3.9	•	4" diameter well = 0.653 x LWC 6" diameter well = 1.469 x LWC			
Samplers: _		Aaron Frederic	су	Sampler	Affiliation:		ERM	ERM			
Purge Method	d/Equipmen	t:			· B	ailer					
Stabilization '	Test Equipn	nent:			Hanna 99130	01 & LaMotte	2020				
Sampling Me	thod/Equip	ment:			QED SampleF	ro Micropurge	Pump				
				Stabiliz	ation Test:						
Date	Time	Cumulative Volume (gal)	Depth to Water (ft)	рН	Specific Conductance (µS/cm)	Turbidity (NTU)	Dissolved Oxygen (ppt)	Temperature (C)	ORP (mV)		
11/17/2010	10:50	Initial	8.81	7.31	8600	16.0	-	13.2			
	11:00	2.0	14.81	7.39	8680	249	-	13.1	-		
	11:08	4.0	16.08	7.40	8350	>1000	-	12.8	· -		
Low Flow											
11/17/2010	11:32	4.0	14.16	7.52	8840	425.0	-	12.5	-		
	11:37	4.5	14.37	7.51	9310	88.9		12.9	-		
	11:43	5.0	14.55	7.49	9282	77.1		13.2	<u>-</u>		
	11:50	5.5	14.89	7.50	9330	98.0		13.3	-		
								•			
					- :						
Volume Purg	ed Prior to S	Sample Collection	1: 5.5		Depth to	Water during S	Sample Collection	on: 14	1.89		
	Analys	is/Parameter		. Conta	ainer/Volume		Preservati	ve/Preparation			
		P VOCs			mL Vials			HCI			
		als (unfiltered)			00 mL Poly			INO ₃			
		vocs			00 mL Poly 0 mL Amber			INO ₃ None			
	<u> </u>	TOCS	-	. 1000	THE AHOU			TOLIC			

GROUNDWATER SAMPLING FIELD DATA FORM Well Identification: <u>MW-10</u>

Project:	Project: Greiners Lagoon			Sampl	le Date:	11/16/2010				
Project Nu	mber:	0047810		Samp!	le Time: 0	815				
Screened Inte	erval:	4-14 bgs	Initial	Depth to Wa	ater (ft):1	3.09		ater Volume/ft		
Measured Wo	ell Depth (ft)):16.87	Lengt	th of Water Column (ft): 3.78				meter well = 0.163 meter well = 0.653		
Well Inner D	iameter (in):	2	1 Wel	l Volume (ga	1): 0.62	x 3 = 1.8				
Samplers:		Aaron Frederic	;y	Sample	er Affiliation:		ERM			
Purge Metho	d/Equipment	t:			В	ailer			·	
Stabilization	Test Equipn	nent:			Hanna 99130	01 & LaMotte 2	2020			
Sampling Me	thod/Equip	nent:			QED SampleP	ro Micropurge	Pump			
	<u>·</u>	<u>.</u>		Stabili	zation Test:					
Date	Time	Cumulative Volume (gal)	Depth to Water (ft)	pH	Specific Conductance (µS/cm)	Turbidity (NTU)	Dissolved Oxygen (ppt)	Temperature (C)	ORP (mV)	
11/15/2010	15:55	Initial	13.09	6.83	2440	6.64	-	13.3		
	16:00	1.5		6.9	2460	248		13.0		
	16:07	2.0	15.75	6.91	2460	1.60	- '	12.7	-	
Low Flow										
11/15/2010	16:18	2.0	15.49	6.94	2630	37.0	-	12.4	_	
	16:21	2.25	DRY	-	-	-	-	-	-	
11/16/2010	08:15	Initial	13.66	6.81	2620	1.0	-	10.1	-	
				1			· .			
Volume Pure	ed Prior to S	Sample Collection	n: 2.25	<u> </u>	Denth to	Water during S	Sample Collection	on: 16	6.66	
,		is/Parameter			tainer/Volume			ve/Preparation		
		P VOCs			0 mL Vials			HCI	•	
		als (unfiltered) etals (filtered)			000 mL Poly 000 mL Poly			INO ₃ INO ₃		
		VOCs			00 mL Amber			None		
		1005		100	70 Has I timour		•	· · · · · · · · · · · · · · · · · · ·		
Remarks: Top of Pump	: 15.63 ft fro	om TOC								

GROUNDWATER SAMPLING FIELD DATA FORM Well Identification: <u>MW-11</u>

Project:	Greiners La	agoon		Sampl	e Date:	11/17/	2010			
Project Nu	mber:	0047810		Sampl	e Time:	1320				
Screened Inte Measured We Well Inner D	ell Depth (ft):	4-14 bgs 16.54 2	Length	nitial Depth to Water (ft):10. ength of Water Column (ft): Well Volume (gal): 0.93 x			5.73	2" dia - 4" dia	Water Volume/ft. for: 2" diameter well = 0.163 x LWC 4" diameter well = 0.653 x LWC 6" diameter well = 1.469 x LWC	
Samplers:		Aaron Frederic	y	Sample	r Affiliation:			ERM		,
D 34.4	105					D-11				•
Purge Metho					Bailer Hanna 991301 & LaMotte 2020					
Stabilization Sampling Me			QED Sampl		-					
				6. 1.31				· · · · · · · · · · · · · · · · · · ·		
				Stabiliz	zation Test:	·		T		
Date	Time	Cumulative Volume (gal)	Depth to Water (ft)	pН	Specific Conductanc (µS/cm)	ופי	rbidity VTU)	Dissolved Oxygen (ppt)	Temperature (C)	ORP (mV)
11/16/2010	14:22	Initial	10.73	6.94	7650	1	12.1	-	12.8	-
	14:25	1.5		6.96	7750		12.6	-	12.5 ⁻	-
	14:31	3.0	DRY				-	-	-	-
11/17/2010	13:20	Initial	10.71	7.01	7820	-	27.5	<u>-</u>	13.2	-
		·						-		
Volume Purg	ged Prior to Sa	ample Collection	n:3.0		Depth	to Water	during S	Sample Collection	on: 10).71
	Analysis	/Parameter		Con	tainer/Volume	e)		Preservati	ve/Preparation	
		VOCs			0 mL Vials				HCI	
		ls (unfiltered)			00 mL Poly			· · · · · · · · · · · · · · · · · · ·	INO ₃	· · · · · · · · · · · · · · · · · · ·
		als (filtered) /OCs			00 mL Poly 0 mL Amber				INO ₃ None	<u>-</u>
Remarks:					Тор	of Pump	: 14.99 1	t from TOC		

GROUNDWATER SAMPLING FIELD DATA FORM

Well Identification: MW-12

Project: Greiners Lagoon			Samp	le Date: 1	1/17/2010				
Project Nu	ımber:	0047810	•	Samp	le Time:	1420			
Measured W	Screened Interval: 4-14 bgs Measured Well Depth (ft): 16.64 Well Inner Diameter (in): 2 Samplers: Aaron Frederic		Initial Depth to Water (ft): Length of Water Column (ft): I Well Volume (gal): 0.62			•	Water Volume/ft. for: 2" diameter well = 0.163 x LWC 4" diameter well = 0.653 x LWC 6" diameter well = 1.469 x LWC		
Samplers:		Aaron Frederic	; y	Sample	er Affiliation:		ERM		•
Purge Metho Stabilization	• •	nt:		Bailer Hanna 991301 & LaMotte 2020					
Sampling M	ethod/Equip	ment:				Bailer		·	
				Stabili	zation Test:				
Date	Time	Cumulative Volume (gal)	Depth to Water (ft)	pН	Specific Conductance (µS/cm)	Turbidity (NTU)	Dissolved Oxygen (ppt)	Temperature (C)	ORP (mV)
11/16/2010	14:25	Initial	13.45	6.68	9080	3.6	-	12.5	-
·	14:28	1.0	14.79	6.71	9050	8.3	-	12.1	-
	14:32	1.5	DRY	-	-		-	-	-
11/17/2010	14:20	Initial	14.35	6.64	9710	19.8	_	12.3	-
Volume Purg	ged Prior to	Sample Collection	on: 1.5		Depth to V	Vater during S	ample Collection	on:14	1.35
		s/Parameter			tainer/Volume			ve/Preparation	
		P VOCs als (unfiltered)	·		0 mL Vials 00 mL Poly			HCI INO ₃	
		tals (filtered)	 ·		000 mL Poly			INO ₃	
,		VOCs			00 mL Amber		I	None	
Remarks: Recalibration	n: 7.0 STD (@ 6.98 / 12880 S	STD @ 1285	0	· .	Top of Pump:	13.37 ft from		

Remarks:

Recalibration: 7.0 STD @ 6.97 / 12880 STD @ 12860

Water has a yellow tint; Duplicate taken

GROUNDWATER SAMPLING FIELD DATA FORM Well Identification: <u>MW-13</u>

ERM 30775 Bainbridge Road Suite 180 Solon, OH 44139

Project:	Greiners L			Sampl	e Date:	11/17/2010				
Project Nu	mber:	0047810		Sampl	e Time:()959				
Screened Inte	erval:	4-14 bgs	Initial	Depth to Wa	iter (ft):	8.66		ater Volume/ft		
Measured W	ell Depth (ft)	: 16.8	Length	of Water Co	olumn (ft):	8.14	2" diameter well = 0.163 x LWC - 4" diameter well = 0.653 x LWC			
Well Inner D	iameter (in):	2	l Well	Volume (gal): 1.33 x 3 = 4.0 6" diameter well = 0.633 x LWC						
Samplers:	·	Aaron Frederic	y	Sample	r Affiliation:		ERM	<u>-</u>		
Purge Metho	d/Equipment	:			I	Bailer				
Stabilization	Test Equipm	nent:			Hanna 9913	01 & LaMotte	2020		_	
Sampling Mo	ethod/Equipn	nent:			QED Sample	Pro Micropurge	Pump		•	
		· · ·		Stabilia	zation Test:		<u> </u>			
Date	Time	Cumulative Volume (gal)	Depth to Water (ft)	рН	Specific Conductance (µS/cm)	Turbidity (NTU)	Dissolved Oxygen (ppt)	Temperature (C)	ORP (mV)	
11/17/2010	08:50	Initial	8.60	7.78	4970	9.3	-	13.2	-	
	08:56	2.0	12.65	7.84	4580	82.0	-	12.6	-	
	09:01	4.0	15.22	7.91	4420	156.4	-	12.7	-	
Low Flow							_		•	
11/17/2010	09:38	4.0	8.57	8.07	6790 ·	179	-	11.5	-	
	09:43	4.5	9.15	8.08	7180	105.4	-	13.1	-	
	09:47	5.0	9.60	8.08	6640	43.8	-	13.1	-	
	09:51	5.5	9.60	8.04	6180	25.1	-	13.0	-	
	09:55	6.0	9:60	7.99	5890	18.3	-	12.9	-	
	09:59	6.5	9.64	7.98	5840	16.4	-	12.9	-	
Volume Purg	ged Prior to S	ample Collection	ı: <u>6.5</u>		Depth to	Water during S	Sample Collection	on: 9	0.64	
	Analysi	s/Parameter		Con	tainer/Volume		Preservati	ve/Preparation		
VAP VOCs				4	0 mL Vials			HCI		
TAL Metals (unfiltered)				10	00 mL Poly		HNO ₃			
		tals (filtered)		10	00 mL Poly		F	HNO ₃		
	SVOCs				0 mL Amber		Ì	None		

Top of Pump: 14.73 ft from TOC

GROUNDWATER SAMPLING FIELD DATA FORM Well Identification: <u>MW-14</u>

Project:	Greiners L	agoon		Sampl	e Date: 1	1/16/2010			
Project Nu	mber:	0047810		Sampl	e Time: 0	953			
Screened Into Measured W Well Inner D	ell Depth (ft)	4-14 bgs : 16.45	Lengtł	-	olumn (ft):	$\frac{7.78}{x \ 3 = 3.8}$	2" dia 4" dia	ater Volume/ft. meter well = 0.163 meter well = 1.469	3 x LWC 3 x LWC
Samplers:		Aaron Frederic	у	Sample	r Affiliation:		ERM		
Purge Metho	d/Equipment	:				ailer			
	Test Equipm					1 & LaMotte 2			
Sampling Method/Equipment: QED SamplePro Micropurge Pump									
		·		Stabili	zation Test:				
Date	Time	Cumulative Volume (gal)	Depth to Water (ft)	pН	Specific Conductance (µS/cm)	Turbidity (NTU)	Dissolved Oxygen (ppt)	Temperature (C)	ORP (mV)
11/16/2010	09:10	Initial '	8.95	7.01	4350	1.94	-	12.4	-
	09:15	2.0	12.38	7.07	4910	115	_	12.2	
	09:20	4.0	14.55	7.08	5070	2.02	-	12.7	-
Low Flow									
11/16/2010	09:35	4.0	9.25	7.09	5010	33.5	-	11.2	- .
	09:40	4.5	9.61	7.04	4930	140	-	12.0	-
	09:44	5.0	10.02	7.01	4690	10.49	<u> </u>	. 12.2	-
	09:48	5.5	10.06	7.01	4470	13.2	, -	12.1	
	09:53	6.0	10.11	7.01	4540	8.72	-	12.1	-
Volume Purg	ged Prior to S	ample Collection	a: <u>6.0</u>		Depth to	Water during S	ample Collection	on:10	0.11
	Analysi	s/Parameter	-	Con	tainer/Volume		Preservati	ve/Preparation	
	VAI	P VOCs	•	4	0 mL Vials			HCI	
-		ls (unfiltered)			00 mL Poly			INO ₃	
		tals (filtered)			000 mL Poly			INO ₃	
	SV	/OCs		100	00 mL Amber			None	
Remarks: Recalibration	n: 7.0 STD @	7.02			Top of	Pump: 13.50 f	rom TOC		

GROUNDWATER SAMPLING FIELD DATA FORM Well Identification: <u>MW-15</u>

Project:	Greiners L	agoon		Sampl	e Date: 1	1/16/2010			
Project Nu	mber:	0047810		Sampl	e Time: 1	115			
		: 17.30	Length	Initial Depth to Water (ft): 8. Length of Water Column (ft): 1.50 x			2" dia - 4" dia	Water Volume/ft. for: 2" diameter well = 0.163 x LWC 4" diameter well = 0.653 x LWC 6" diameter well = 1.469 x LWC	
Samplers:		Aaron Frederic	у	Sample	r Affiliation:		ERM		
Purge Metho	d/Equipment	:	· · · · · · · · · · · · · · · · · · ·		В	ailer	•		
Stabilization	Test Equipm	ient:	·		Hanna 99130	1 & LaMotte 2	2020		
Sampling Mo	ethod/Equipn	nent:			QED SampleP	ro Micropurge	Pump		
				Stabilia	zation Test:				
Date	Time	Cumulative Volume (gal)	Depth to Water (ft)	рН	Specific Conductance (µS/cm)	Turbidity (NTU)	Dissolved Oxygen (ppt)	Temperature (C)	ORP (mV)
11/16/2010	10:35	Initial	8.11	6.90	750	12.90	-	15.1	-
	10:43	2.0	8.30	6.95	760	475		14.0	
	. 10:50	4.5	8.19	7.00	-890	439		13.0	-
Low Flow									
11/16/2010	11:03	4.5	8.15	7.05	1290	839	-	11.5	
	11:07	5:0	8.26	7.12	1280	187	-	13.0	-
	11:11	5.5	8.26	7.15.	1230	116	-	12.9	
	11:15	6.0	8.25	7.14	1200	66.5	-	12.8	<u>-</u>
			1						
									·
Volume Purg	ged Prior to S	ample Collection	: <u>6.0</u>		. Depth to	Water during S	ample Collection	on: 8	.25
	Analysi	s/Parameter		Cont	ainer/Volume		Preservati	ve/Preparation	
•	VA	P VOCs		4	0 mL Vials			HCI	
		als (unfiltered)			00 mL Poly			INO ₃	
		tals (filtered)			00 mL Poly			INO ₃	
	S	VOCs		100	0 mL Amber			None	
Remarks: Recalibration	n: 7.0 STD @	7.00			Top of	Pump: 14.51 fi	t from TOC		•

Appendix D Laboratory Analytical Data Sheets

ANALYTICAL REPORT

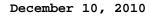
GREINER'S LAGOON

Lot #: A0K180499

Sarah Gregg

ERM Inc 30775 Bainbridge Road Suite 180 Solon, OH 44139

TESTAMERICA LABORATORIES, INC.


Patrick J. O'Meara

Patrick O'Mearon

Project Manager

patrick.omeara@testamericainc.com

Approved for release Patrick O'Meara Project Manager 12/10/2010 2:44 PM

CASE NARRATIVE

A0K180499

The following report contains the analytical results for nine water samples and one quality control sample submitted to TestAmerica North Canton by ERM Inc. from the GREINER'S LAGOON Site. The samples were received November 18, 2010, according to documented sample acceptance procedures.

TestAmerica utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. Preliminary results were provided to Sarah Gregg on December 09, 2010. A summary of QC data for these analyses is included at the back of the report.

TestAmerica North Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

All parameters were evaluated to the method detection limit and include qualified results where applicable.

Please refer to the Quality Control Elements Narrative following this case narrative for additional quality control information.

If you have any questions, please call the Project Manager, Patrick J. O'Meara, at 330-497-9396.

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT."

CASE NARRATIVE (continued)

SUPPLEMENTAL QC INFORMATION

SAMPLE RECEIVING

The temperatures of the coolers upon sample receipt were 1.5, 1.6, and 2.0°C.

GC/MS VOLATILES

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

There were no client requested Matrix Spike/Matrix Spike Duplicate (MS/MSD) samples in batch(es) 0334286. Therefore, the laboratory has included a Laboratory Control Sample Duplicate (LCSD) in the QC batch. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system.

Sample(s) MW-11, MW-12, MW-13, and MW-13 DUPLICATE had elevated reporting limits due to foaming.

GC/MS SEMIVOLATILES

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "B". All target analytes in the Method Blank must be below the reporting limit (RL) or the associated sample(s) must be ND with the exception of common laboratory contaminants.

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

There were no client requested Matrix Spike/Matrix Spike Duplicate (MS/MSD) samples in batch(es) 0325050. Therefore, the laboratory has included a Laboratory Control Sample Duplicate (LCSD) in the QC batch. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system.

CASE NARRATIVE (continued)

GC/MS SEMIVOLATILES (continued)

Sample(s) MW-10, MW-14, MW-13, MW-13 DUPLICATE, MW-9, MW-11, and MW-12 had elevated reporting limits due to matrix interferences.

METALS

The sample(s) that contain results between the MDL and the RL were flagged with "B". There is the possibility of false positive or mis-identification at these quantitation levels. The acceptance criteria for the ICB, CCB, and Method Blank are +/- the standard reporting limit (SRL).

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "J". Refer to the sample report pages for the affected analyte(s).

The CCV exceeded method criteria on the high side for Arsenic. Since the sample(s) MW-11, MW-12, and EQUIPMENT BLANK #1 results were below the requested reporting limit the results were accepted.

QUALITY CONTROL ELEMENTS NARRATIVE

TestAmerica conducts a quality assurance/quality control (QA/QC) program designed to provide scientifically valid and legally defensible data. Toward this end, several types of quality control indicators are incorporated into the QA/QC program, which is described in detail in QA Policy, QA-003. These indicators are introduced into the sample testing process to provide a mechanism for the assessment of the analytical data. Program or agency specific requirements take precedence over the requirements listed in this narrative.

OC BATCH

Environmental samples are taken through the testing process in groups called QUALITY CONTROL BATCHES (QC batches). A QC batch contains up to twenty environmental samples of a similar matrix (water, soil) that are processed using the same reagents and standards. TestAmerica North Canton requires that each environmental sample be associated with a QC batch.

Several quality control samples are included in each QC batch and are processed identically to the twenty environmental samples.

For SW846/RCRA methods, QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) pair or a MATRIX SPIKE/SAMPLE DUPLICATE (MS/DU) pair. If there is insufficient sample to perform an MS/MSD or an MS/DU, then a LABORATORY CONTROL SAMPLE DUPLICATE (LCSD) is included in the QC batch.

For 600 series/CWA methods, QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE (MS). An MS is prepared and analyzed at a 10% frequency for GC Methods and at a 5% frequency for GC/MS methods.

LABORATORY CONTROL SAMPLE

The Laboratory Control Sample is a QC sample that is created by adding known concentrations of a full or partial set of target analytes to a matrix similar to that of the environmental samples in the QC batch. Multi peak responders may not be included in the target spike list due to co-elution. The LCS analyte recovery results are used to monitor the analytical process and provide evidence that the laboratory is performing the method within acceptable guidelines. All control analytes indicated by a bold type in the LCS must meet acceptance criteria. Failure to meet the established recovery guidelines requires the repreparation and reanalysis of all samples in the QC batch. Comparison of only the failed parameters from the first batch are evaluated. The only exception to the rework requirement is that if the LCS recoveries are biased high and the associated sample is ND (non-detected) for the parameter(s) of interest, the batch is acceptable.

At times, a Laboratory Control Sample Duplicate (LCSD) is also included in the QC batch. An LCSD is a QC sample that is created and handled identically to the LCS. Analyte recovery data from the LCSD is assessed in the same way as that of the LCS. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system. Precision data are expressed as relative percent differences (RPDs). If the RPD fails for an LCS/LCSD and yet the recoveries are within acceptance criteria, the batch is still acceptable.

METHOD BLANK

The Method Blank is a QC sample consisting of all the reagents used in analyzing the environmental samples contained in the QC batch. Method Blank results are used to determine if interference or contamination in the analytical system could lead to the reporting of false positive data or elevated analyte concentrations. All target analytes must be below the reporting limits (RL) or the associated sample(s) must be ND except under the following circumstances:

• Common organic contaminants may be present at concentrations up to 5 times the reporting limits. Common metals contaminants may be present at concentrations up to 2 times the reporting limit, or the reported blank concentration must be twenty fold less than the concentration reported in the associated environmental samples. (See common laboratory contaminants listed in the table.)

Volatile (GC or GC/MS)	Semivolatile (GC/MS)	Metals ICP-MS	Metals ICP Trace
Methylene Chloride,	Phthalate Esters	Copper, Iron, Zinc,	Copper, Iron, Zinc, Lead
Acetone, 2-Butanone		Lead, Calcium,	
		Magnesium, Potassium,	
		Sodium, Barium,	
		Chromium, Manganese	

QUALITY CONTROL ELEMENTS NARRATIVE (continued)

- Organic blanks will be accepted if compounds detected in the blank are present in the associated samples at levels 10 times the blank level. Inorganic blanks will be accepted if elements detected in the blank are present in the associated samples at 20 times the blank level.
- Blanks will be accepted if the compounds/elements detected are not present in any of the associated environmental samples.

Failure to meet these Method Blank criteria requires the repreparation and reanalysis of all samples in the QC batch.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

A Matrix Spike and a Matrix Spike Duplicate are a pair of environmental samples to which known concentrations of a full or partial set of target analytes are added. The MS/MSD results are determined in the same manner as the results of the environmental sample used to prepare the MS/MSD. The analyte recoveries and the relative percent differences (RPDs) of the recoveries are calculated and used to evaluate the effect of the sample matrix on the analytical results. Due to the potential variability of the matrix of each sample, the MS/MSD results may not have an immediate bearing on any samples except the one spiked; therefore, the associated batch MS/MSD may not reflect the same compounds as the samples contained in the analytical report. When these MS/MSD results fail to meet acceptance criteria, the data is evaluated. If the LCS is within acceptance criteria, the batch is considered acceptable.

For certain methods, a Matrix Spike/Sample Duplicate (MS/DU) may be included in the QC batch in place of the MS/MSD. For the parameters (i.e. pH, ignitability) where it is not possible to prepare a spiked sample, a Sample Duplicate may be included in the QC batch. However, a Sample Duplicate is less likely to provide usable precision statistics depending on the likelihood of finding concentrations below the standard reporting limit. When the Sample Duplicate result fails to meet acceptance criteria, the data is evaluated.

For certain methods (600 series methods/CWA), a Matrix Spike is required in place of a Matrix Spike/Matrix Spike Duplicate (MS/MSD) or Matrix Spike/Sample Duplicate (MS/DU).

The acceptance criteria do not apply to samples that are diluted.

SURROGATE COMPOUNDS

In addition to these batch-related QC indicators, each organic environmental and QC sample is spiked with surrogate compounds. Surrogates are organic chemicals that behave similarly to the analytes of interest and that are rarely present in the environment. Surrogate recoveries are used to monitor the individual performance of a sample in the analytical system.

If surrogate recoveries are biased high in the LCS, LCSD, or the Method Blank, and the associated sample(s) are ND, the batch is acceptable. Otherwise, if the LCS, LCSD, or Method Blank surrogate(s) fail to meet recovery criteria, the entire sample batch is reprepared and reanalyzed. If the surrogate recoveries are outside criteria for environmental samples, the samples will be reprepared and reanalyzed unless there is objective evidence of matrix interference or if the sample dilution is greater than the threshold outlined in the associated method SOP.

The acceptance criteria do not apply to samples that are diluted. All other surrogate recoveries will be reported.

For the GC/MS BNA methods, the surrogate criterion is that two of the three surrogates for each fraction must meet acceptance criteria. The third surrogate must have a recovery of ten percent or greater.

For the Pesticide and PCB methods, the surrogate criterion is that one of two surrogate compounds must meet acceptance criteria. The second surrogate must have a recovery of 10% or greater.

TestAmerica Certifications and Approvals:

The laboratory is certified for the analytes listed on the documents below. These are available upon request. California (#01144CA), Connecticut (#PH-0590), Florida (#E87225),

Illinois (#200004), Kansas (#E10336), Minnesota (#39-999-348), New Jersey (#OH001), New York (#10975), Nevada (#OH-000482008A), OhioVAP (#CL0024), Pennsylvania (#008), West Virginia (#210), Wisconsin (#999518190),NAVY, ARMY, USDA Soil Permit

N:\QAQC\Customer Service\Narrative - Combined RCRA CWA 032609.doc

EXECUTIVE SUMMARY - Detection Highlights

A0K180499

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
MW-10 11/16/10 08:15 001				
Arsenic - DISSOLVED Thallium - DISSOLVED	4.1 B 7.2 B,J	10.0 10.0	ug/L ug/L	SW846 6010B SW846 6010B
Antimony - DISSOLVED	3.0 B	60.0	ug/L	SW846 6010B
Nickel - DISSOLVED	16.8 B	40.0	ug/L	SW846 6010B
Zinc - DISSOLVED	6.5 B	20.0	ug/L	SW846 6010B
Thallium	10.1 J	10.0	ug/L	SW846 6010B
Nickel	16.2 B	40.0	ug/L	SW846 6010B
Acetone	21	10	ug/L	SW846 8260B
2-Butanone (MEK)	1.5 J	10	ug/L	SW846 8260B
4-Methyl-2-pentanone (MIBK)	0.34 Ј	10	ug/L	SW846 8260B
MW-14 11/16/10 09:53 002				
Arsenic - DISSOLVED	10.8	10.0	ug/L	SW846 6010B
Thallium - DISSOLVED	9.1 B,J	10.0	ug/L	SW846 6010B
Nickel - DISSOLVED	19.5 B	40.0	ug/L	SW846 6010B
Zinc - DISSOLVED	5.1 B	20.0	ug/L	SW846 6010B
Arsenic	11.3	10.0	ug/L	SW846 6010B
Thallium	9.0 B,J	10.0	ug/L	SW846 6010B
Nickel	18.7 B	40.0	ug/L	SW846 6010B
Zinc	12.2 B	20.0	ug/L	SW846 6010B
Acetone	13	10	ug/L	SW846 8260B
2-Butanone (MEK)	0.57 J	10	ug/L	SW846 8260B
4-Methyl-2-pentanone (MIBK)	0.68 J	10	ug/L	SW846 8260B
MW-15 11/16/10 11:15 003				
Arsenic - DISSOLVED	3.7 в	10.0	ug/L	SW846 6010B
Nickel - DISSOLVED	7.0 B	40.0	ug/L	SW846 6010B
Zinc - DISSOLVED	5.2 B	20.0	ug/L	SW846 6010B
Thallium	5.1 B,J	10.0	ug/L	SW846 6010B
Nickel	8.0 B	40.0	ug/L	SW846 6010B
Zinc	12.7 B	20.0	ug/L	SW846 6010B
Acetone	1.1 Ј	10	ug/L	SW846 8260B
MW-13 11/17/10 09:59 004				
Arsenic - DISSOLVED	23.4	10.0	ug/L	SW846 6010B
Nickel - DISSOLVED	11.2 B	40.0	ug/L	SW846 6010B
Arsenic	23.2	10.0	ug/L	SW846 6010B
Lead	3.6	3.0	ug/L	SW846 6010B

EXECUTIVE SUMMARY - Detection Highlights

A0K180499

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
MW-13 11/17/10 09:59 004				
Thallium	4.9 B,J	10.0	ug/L	SW846 6010B
Nickel	12.0 B	40.0	ug/L	SW846 6010B
Zinc	9.1 B	20.0	ug/L	SW846 6010B
Acetone	21	20	ug/L	SW846 8260B
4-Methyl-2-pentanone (MIBK)	1.3 Ј	20	ug/L	SW846 8260B
MW-13 DUPLICATE 11/17/10 09:59 005				
Arsenic - DISSOLVED	23.6	10.0	ug/L	SW846 6010B
Nickel - DISSOLVED	11.3 B	40.0	ug/L	SW846 6010B
Arsenic	21.2	10.0	ug/L	SW846 6010B
Lead	3.2	3.0	ug/L	SW846 6010B
Nickel	10.7 B	40.0	ug/L	SW846 6010B
Zinc	35.4	20.0	ug/L	SW846 6010B
Acetone	20	20	ug/L	SW846 8260B
4-Methyl-2-pentanone (MIBK)	1.4 Ј	20	ug/L	SW846 8260B
MW-9 11/17/10 11:50 006				
Arsenic - DISSOLVED	31.1	10.0	ug/L	SW846 6010B
Thallium - DISSOLVED	6.6 B,J	10.0	ug/L	SW846 6010B
Nickel - DISSOLVED	8.3 B	40.0	ug/L	SW846 6010B
Zinc - DISSOLVED	12.5 B	20.0	ug/L	SW846 6010B
Arsenic	33.4	10.0	ug/L	SW846 6010B
Lead	2.8 B	3.0	ug/L	SW846 6010B
Thallium	7.9 B,J	10.0	ug/L	SW846 6010B
Antimony	2.9 B	60.0	ug/L	SW846 6010B
Chromium	4.4 B	10.0	ug/L	SW846 6010B
Copper	6.4 B	25.0	ug/L	SW846 6010B
Nickel	14.3 B	40.0	ug/L	SW846 6010B
Zinc	27.0	20.0	ug/L	SW846 6010B
Fluoranthene	6.2	4.0	ug/L	SW846 8270C
Acetone	28	10	ug/L	SW846 8260B
2-Butanone (MEK)	2.8 J	10	ug/L	SW846 8260B
4-Methyl-2-pentanone (MIBK)	2.2 Ј	10	ug/L	SW846 8260B

EXECUTIVE SUMMARY - Detection Highlights

A0K180499

			REPORTING		ANALYTICAL
	PARAMETER	RESULT	LIMIT	UNITS	METHOD
MW-11	11/17/10 13:20 007				
	Arsenic - DISSOLVED	10.7	10.0	ug/L	SW846 6010B
	Thallium - DISSOLVED	5.8 B,J	10.0	ug/L	SW846 6010B
	Antimony - DISSOLVED	2.9 B	60.0	ug/L	SW846 6010B
	Nickel - DISSOLVED	29.6 B	40.0	ug/L	SW846 6010B
	Zinc - DISSOLVED	18.1 B	20.0	ug/L	SW846 6010B
	Arsenic	8.3 B	10.0	ug/L	SW846 6010B
	Lead	3.0	3.0	ug/L	SW846 6010B
	Thallium	9.8 B,J	10.0	ug/L	SW846 6010B
	Nickel	32.0 B	40.0	ug/L	SW846 6010B
	Zinc	20.3	20.0	ug/L	SW846 6010B
	Acetone	11 J	20	ug/L	SW846 8260B
	4-Methyl-2-pentanone (MIBK)	1.6 J	20	ug/L	SW846 8260B
	(PILDIC)				
MW-12	11/17/10 14:20 008				
	Thallium - DISSOLVED	9.3 B,J	10.0	ug/L	SW846 6010B
	Arsenic - DISSOLVED	6.5 B	10.0	ug/L	SW846 6010B
	Nickel - DISSOLVED	53.0	40.0	ug/L	SW846 6010B
	Zinc - DISSOLVED	13.4 B	20.0	ug/L	SW846 6010B
	Thallium	8.6 B,J	10.0	ug/L	SW846 6010B
	Arsenic	5.0 B	10.0	ug/L	SW846 6010B
	Antimony	2.3 B	60.0	ug/L	SW846 6010B
	Cadmium	0.67 B	5.0	ug/L	SW846 6010B
	Nickel	50.4	40.0	ug/L	SW846 6010B
	Zinc	8.2 B	20.0	ug/L	SW846 6010B
	<pre>bis(2-Ethylhexyl) phthalate</pre>	6.7 J,B	10	ug/L	SW846 8270C
	Acetone	9.1 J	20	ug/L	SW846 8260B
EQUIPM	ENT BLANK #1 11/17/10 15:10 00	19			
	Arsenic - DISSOLVED	3.4 B	10.0	ug/L	SW846 6010B
	Thallium - DISSOLVED	6.2 B,J	10.0	ug/L	SW846 6010B
	<pre>bis(2-Ethylhexyl) phthalate</pre>	0.98 J,B	2.0	ug/L	SW846 8270C

ANALYTICAL METHODS SUMMARY

A0K180499

PARAMETER	ANALYTICAL METHOD
Inductively Coupled Plasma (ICP) Metals	SW846 6010B
Mercury in Liquid Waste (Manual Cold-Vapor)	SW846 7470A
Semivolatile Organic Compounds by GC/MS	SW846 8270C
Volatile Organics by GC/MS	SW846 8260B

References:

SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

10 of 120

SAMPLE SUMMARY

A0K180499

WO #	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
L98J0	001	MW-10	11/16/10	08:15
L98J3	002	MW-14	11/16/10	09:53
L98J4	003	MW-15	11/16/10	11:15
L98J6	004	MW-13	11/17/10	09:59
L98J7	005	MW-13 DUPLICATE	11/17/10	09:59
L98J9	006	MW-9	11/17/10	11:50
L98KA	007	MW-11	11/17/10	13:20
L98KC	800	MW-12	11/17/10	14:20
L98KE	009	EQUIPMENT BLANK #1	11/17/10	15:10
L98KH	010	TRIP BLANK	11/17/10	16:00

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: MW-10

GC/MS Volatiles

Lot-Sample #...: A0K180499-001 Work Order #...: L98J01A6 Matrix.....: WG

Date Sampled...: 11/16/10 08:15 Date Received..: 11/18/10 Prep Date....: 11/30/10 Analysis Date..: 11/30/10

Prep Batch #...: 0334286

Dilution Factor: 1 Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acetone	21	10	ug/L
Acetonitrile	ND	20	ug/L
Acrolein	ND	20	ug/L
Acrylonitrile	ND	20	ug/L
Allyl chloride	ND	2.0	ug/L
Benzene	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	ug/L
2-Butanone (MEK)	1.5 J	10	ug/L
Carbon disulfide	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Chloroethane	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
Chloroprene	ND	2.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,2-Dibromo-3-chloro-	ND	2.0	ug/L
propane			
1,2-Dibromoethane (EDB)	ND	1.0	ug/L
Dibromomethane	ND	1.0	ug/L
trans-1,4-Dichloro-	ND	1.0	ug/L
2-butene			
Dichlorodifluoromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
1,4-Dioxane	ND	200	ug/L
Ethylbenzene	ND	1.0	ug/L
Ethyl methacrylate	ND	1.0	ug/L
2-Hexanone	ND	10	ug/L
Iodomethane	ND	1.0	ug/L
Isobutyl alcohol	ND	50	ug/L
Methacrylonitrile	ND	2.0	ug/L

Client Sample ID: MW-10

GC/MS Volatiles

Lot-Sample #...: A0K180499-001 Work Order #...: L98J01A6 Matrix.....: WG

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Methylene chloride	ND	1.0	ug/L
Methyl methacrylate	ND	2.0	ug/L
4-Methyl-2-pentanone	0.34 J	10	ug/L
(MIBK)			
Propionitrile	ND	4.0	ug/L
Styrene	ND	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
Vinyl acetate	ND	2.0	ug/L
Vinyl chloride	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
CUDDOCATE			
SURROGATE Dibromofluoromethane	RECOVERY 87	LIMITS	-
	-	(75 - 121)	
1,2-Dichloroethane-d4	83	(63 - 129)	
Toluene-d8	89	(74 - 115)	
4-Bromofluorobenzene	99	(66 - 117)	

J Estimated result. Result is less than RL.

NOTE(S):

MW-10

GC/MS Volatiles

Lot-Sample #: A0K180499-001	Work Order #: L98J01A6	Matrix: WG
MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDEN	TIFIED COMPOUNDS
PARAMETER None	ESTIM CAS # RESUL	

Client Sample ID: MW-10

GC/MS Semivolatiles

Lot-Sample #...: A0K180499-001 Work Order #...: L98J01A7 Matrix.....: WG

Date Sampled...: 11/16/10 08:15 Date Received..: 11/18/10 Prep Date....: 11/22/10 Analysis Date..: 12/02/10

Prep Batch #...: 0325050

Dilution Factor: 10 Method.....: SW846 8270C

		REPORTIN	G	
PARAMETER	RESULT	LIMIT	<u>UNITS</u>	
Phenol	ND	10	ug/L	
bis(2-Chloroethyl)-	ND	10	ug/L	
ether				
2-Chlorophenol	ND	10	ug/L	
1,3-Dichlorobenzene	ND	10	ug/L	
1,4-Dichlorobenzene	ND	10	ug/L	
1,2-Dichlorobenzene	ND	10	ug/L	
2-Methylphenol	ND	10	ug/L	
2,2'-oxybis(1-Chloro- propane)	ND	10	ug/L	
4-Methylphenol	ND	10	ug/L	
N-Nitrosodi-n-propyl-	ND	10	ug/L	
amine				
Hexachloroethane	ND	10	uq/L	
Nitrobenzene	ND	10	ug/L	
Isophorone	ND	10	ug/L	
2-Nitrophenol	ND	20	ug/L	
2,4-Dimethylphenol	ND	20	ug/L	
bis(2-Chloroethoxy)	ND	10	ug/L	
methane				
2,4-Dichlorophenol	ND	20	ug/L	
1,2,4-Trichloro-	ND	10	ug/L	
benzene				
Naphthalene	ND	2.0	ug/L	
4-Chloroaniline	ND	20	ug/L	
Hexachlorobutadiene	ND	10	ug/L	
4-Chloro-3-methylphenol	ND	20	ug/L	
2-Methylnaphthalene	ND	2.0	ug/L	
Hexachlorocyclopenta- diene	ND	100	ug/L	
2,4,6-Trichloro-	ND	50	ug/L	
phenol				
2,4,5-Trichloro-	ND	50	ug/L	
phenol				
2-Chloronaphthalene	ND	10	ug/L	
2-Nitroaniline	ND	20	ug/L	
Dimethyl phthalate	ND	10	ug/L	
Acenaphthylene	ND	2.0	ug/L	
2,6-Dinitrotoluene	ND	50	ug/L	

Client Sample ID: MW-10

GC/MS Semivolatiles

Lot-Sample #...: A0K180499-001 Work Order #...: L98J01A7 Matrix.....: WG

PARMETER			REPORTING	
Acenaphthene	PARAMETER	RESULT		UNITS
2,4-Dinitrophenol ND 50 ug/L 4-Nitrophenol ND 50 ug/L Dibenzofuran ND 10 ug/L 2,4-Dinitrotoluene ND 50 ug/L Diethyl phthalate ND 10 ug/L 4-Chlorophenyl phenyl ND 20 ug/L ether **** **** **** Fluorene ND 2.0 ug/L 4-Nitroaniline ND 20 ug/L 4-Binitro ND 50 ug/L 2-methylphenol ND 50 ug/L 4-Bromophenyl phenol ND 10 ug/L -*** *** *** *** Hexachlorobenzene ND 10 ug/L ether *** *** *** Hexachlorobenzene ND 2.0 ug/L Pentachlorophenol ND 2.0 ug/L Anthracene ND 2.0 ug/L	3-Nitroaniline	ND	20	ug/L
4-Nitrophenol ND	Acenaphthene	ND	2.0	ug/L
Dibenzofuran	2,4-Dinitrophenol	ND	50	ug/L
2,4-Dinitrotoluene	4-Nitrophenol	ND	50	ug/L
Diethyl phthalate		ND	10	ug/L
Diethyl phthalate	2,4-Dinitrotoluene	ND	50	ug/L
## Chlorophenyl phenyl ether ND		ND	10	ug/L
Fluorene		ND	20	ug/L
4-Nitroaniline	ether			
A,6-Dinitro-	Fluorene	ND	2.0	ug/L
A	4-Nitroaniline	ND	20	ug/L
2-methylphenol N-Nitrosodiphenylamine ND 10 ug/L	4,6-Dinitro-	ND	50	
N-Nitrosodiphenylamine				
### Action		ND	10	ug/L
### Hexachlorobenzene ND 2.0 ug/L Pentachlorophenol ND 50 ug/L Phenanthrene ND 2.0 ug/L Phenanthrene ND 2.0 ug/L Anthracene ND 2.0 ug/L Phenanthrene ND 2.0 ug/L Phenanthrene ND 2.0 ug/L Phenanthrene ND 2.0 ug/L Phenanthrene ND 10 ug/L Phenanthrene ND 10 ug/L Phenanthene ND 10 ug/L Phenanthene ND 2.0 ug/L Phenanthene ND 2.0 ug/L Phenanthene ND 2.0 ug/L Phenanthene ND 2.0 ug/L Phenanthrene ND 2.		ND		-
Pentachlorophenol ND 50 ug/L				
Pentachlorophenol ND	Hexachlorobenzene	ND	2.0	uq/L
Phenanthrene	Pentachlorophenol	ND		-
Anthracene ND 2.0 ug/L Carbazole ND 10 ug/L Di-n-butyl phthalate ND 10 ug/L Fluoranthene ND 2.0 ug/L Pyrene ND 2.0 ug/L Butyl benzyl phthalate ND 10 ug/L 3,3'-Dichlorobenzidine ND 50 ug/L Benzo(a) anthracene ND 2.0 ug/L Chrysene ND 2.0 ug/L bis(2-Ethylhexyl) ND 20 ug/L phthalate Di-n-octyl phthalate ND 10 ug/L Benzo(b)fluoranthene ND 2.0 ug/L Benzo(b)fluoranthene ND 2.0 ug/L Benzo(b)fluoranthene ND 2.0 ug/L Benzo(a)pyrene ND 2.0 ug/L Indeno(1,2,3-cd)pyrene ND 2.0 ug/L Dibenz(a,h)anthracene ND 2.0 ug/L Benzo(ghi)perylene ND 2.0 ug/L SURROGATE RECOVERY SURROGA		ND		
Carbazole ND 10 ug/L Di-n-butyl phthalate ND 10 ug/L Fluoranthene ND 2.0 ug/L Pyrene ND 2.0 ug/L Butyl benzyl phthalate ND 10 ug/L Butyl benzyl phthalate ND 10 ug/L Benzo(a)anthracene ND 2.0 ug/L Chrysene ND 2.0 ug/L Chrysene ND 2.0 ug/L bis(2-Ethylhexyl) ND 20 ug/L phthalate ND 20 ug/L Di-n-octyl phthalate ND 10 ug/L Benzo(b)fluoranthene ND 2.0 ug/L Benzo(k)fluoranthene ND 2.0 ug/L Benzo(a)pyrene ND 2.0 ug/L Indeno(1,2,3-cd)pyrene ND 2.0 ug/L Benzo(ghi)perylene ND 2.0 ug/L Benzo(ghi)perylene ND 2.0	Anthracene	ND		ug/L
Di-n-butyl phthalate ND 10 ug/L Fluoranthene ND 2.0 ug/L Pyrene ND 2.0 ug/L Butyl benzyl phthalate ND 10 ug/L 3,3'-Dichlorobenzidine ND 50 ug/L Benzo(a)anthracene ND 2.0 ug/L Chrysene ND 2.0 ug/L bis(2-Ethylhexyl) ND 20 ug/L phthalate ND 20 ug/L Di-n-octyl phthalate ND 10 ug/L Benzo(b)fluoranthene ND 2.0 ug/L Benzo(k)fluoranthene ND 2.0 ug/L Benzo(a)pyrene ND 2.0 ug/L Indeno(1,2,3-cd)pyrene ND 2.0 ug/L Benzo(ghi)perylene ND 2.0 ug/L Benzo(ghi)perylene ND 2.0 ug/L SURROGATE RECOVERY LIMITS Nitrobenzene-d5 48 DIL (27 - 111)	Carbazole			
Fluoranthene ND 2.0 ug/L	Di-n-butyl phthalate	ND		-
Pyrene ND 2.0 ug/L Butyl benzyl phthalate ND 10 ug/L 3,3'-Dichlorobenzidine ND 50 ug/L Benzo(a) anthracene ND 2.0 ug/L Chrysene ND 2.0 ug/L bis(2-Ethylhexyl) ND 20 ug/L phthalate ND 20 ug/L Di-n-octyl phthalate ND 10 ug/L Benzo(b)fluoranthene ND 2.0 ug/L Benzo(k)fluoranthene ND 2.0 ug/L Benzo(a)pyrene ND 2.0 ug/L Indeno(1,2,3-cd)pyrene ND 2.0 ug/L Dibenz(a,h)anthracene ND 2.0 ug/L Benzo(ghi)perylene ND 2.0 ug/L SURROGATE RECOVERY LIMITS Nitrobenzene-d5 48 DIL (27 - 111) 2-Fluorobiphenyl 51 DIL (28 - 110) Terphenyl-d14 71 DIL (37 - 119) <td></td> <td>ND</td> <td>2.0</td> <td>-</td>		ND	2.0	-
Butyl benzyl phthalate ND 10 ug/L 3,3'-Dichlorobenzidine ND 50 ug/L Benzo(a)anthracene ND 2.0 ug/L Chrysene ND 2.0 ug/L bis(2-Ethylhexyl) ND 20 ug/L phthalate ND 20 ug/L Di-n-octyl phthalate ND 10 ug/L Benzo(b)fluoranthene ND 2.0 ug/L Benzo(k)fluoranthene ND 2.0 ug/L Benzo(a)pyrene ND 2.0 ug/L Indeno(1,2,3-cd)pyrene ND 2.0 ug/L Dibenz(a,h)anthracene ND 2.0 ug/L Benzo(ghi)perylene ND 2.0 ug/L SURROGATE RECOVERY LIMITS Nitrobenzene-d5 48 DIL (27 - 111) 2-Fluorobiphenyl 51 DIL (28 - 110) Terphenyl-d14 71 DIL (37 - 119)	Pyrene	ND		-
3,3'-Dichlorobenzidine				-
Benzo(a)anthracene ND 2.0 ug/L Chrysene ND 2.0 ug/L bis(2-Ethylhexyl) ND 20 ug/L phthalate ND 20 ug/L Benzo(b)fluoranthene ND 2.0 ug/L Benzo(k)fluoranthene ND 2.0 ug/L Benzo(a)pyrene ND 2.0 ug/L Indeno(1,2,3-cd)pyrene ND 2.0 ug/L Dibenz(a,h)anthracene ND 2.0 ug/L Benzo(ghi)perylene ND 2.0 ug/L SURROGATE RECOVERY LIMITS Nitrobenzene-d5 48 DIL (27 - 111) 2-Fluorobiphenyl 51 DIL (28 - 110) Terphenyl-d14 71 DIL (37 - 119)		ND		-
Chrysene ND 2.0 ug/L bis(2-Ethylhexyl) ND 20 ug/L phthalate ND 10 ug/L Di-n-octyl phthalate ND 2.0 ug/L Benzo(b)fluoranthene ND 2.0 ug/L Benzo(k)fluoranthene ND 2.0 ug/L Benzo(a)pyrene ND 2.0 ug/L Indeno(1,2,3-cd)pyrene ND 2.0 ug/L Dibenz(a,h)anthracene ND 2.0 ug/L Benzo(ghi)perylene ND 2.0 ug/L PERCENT RECOVERY SURROGATE RECOVERY LIMITS Nitrobenzene-d5 48 DIL (27 - 111) 2-Fluorobiphenyl 51 DIL (28 - 110) Terphenyl-d14 71 DIL (37 - 119)		ND	2.0	-
bis(2-Ethylhexyl) ND 20 ug/L phthalate Di-n-octyl phthalate ND 10 ug/L Benzo(b)fluoranthene ND 2.0 ug/L Benzo(k)fluoranthene ND 2.0 ug/L Benzo(a)pyrene ND 2.0 ug/L Indeno(1,2,3-cd)pyrene ND 2.0 ug/L Dibenz(a,h)anthracene ND 2.0 ug/L Benzo(ghi)perylene ND 2.0 ug/L Benzo(ghi)perylene ND 2.0 ug/L SURROGATE RECOVERY LIMITS Nitrobenzene-d5 48 DIL (27 - 111) 2-Fluorobiphenyl 51 DIL (28 - 110) Terphenyl-d14 71 DIL (37 - 119)	Chrysene	ND		-
phthalate ND 10 ug/L Benzo(b)fluoranthene ND 2.0 ug/L Benzo(k)fluoranthene ND 2.0 ug/L Benzo(a)pyrene ND 2.0 ug/L Indeno(1,2,3-cd)pyrene ND 2.0 ug/L Dibenz(a,h)anthracene ND 2.0 ug/L Benzo(ghi)perylene ND 2.0 ug/L Benzo(ghi)perylene ND 2.0 ug/L SURROGATE RECOVERY LIMITS Nitrobenzene-d5 48 DIL (27 - 111) 2-Fluorobiphenyl 51 DIL (28 - 110) Terphenyl-d14 71 DIL (37 - 119)	-	ND		-
Di-n-octyl phthalate ND 10 ug/L Benzo(b)fluoranthene ND 2.0 ug/L Benzo(k)fluoranthene ND 2.0 ug/L Benzo(a)pyrene ND 2.0 ug/L Indeno(1,2,3-cd)pyrene ND 2.0 ug/L Dibenz(a,h)anthracene ND 2.0 ug/L Benzo(ghi)perylene ND 2.0 ug/L PERCENT RECOVERY LIMITS Nitrobenzene-d5 48 DIL (27 - 111) 2-Fluorobiphenyl 51 DIL (28 - 110) Terphenyl-d14 71 DIL (37 - 119)				
Benzo(b)fluoranthene ND 2.0 ug/L Benzo(k)fluoranthene ND 2.0 ug/L Benzo(a)pyrene ND 2.0 ug/L Indeno(1,2,3-cd)pyrene ND 2.0 ug/L Dibenz(a,h)anthracene ND 2.0 ug/L Benzo(ghi)perylene ND 2.0 ug/L PERCENT RECOVERY SURROGATE RECOVERY LIMITS Nitrobenzene-d5 48 DIL (27 - 111) 2-Fluorobiphenyl 51 DIL (28 - 110) Terphenyl-d14 71 DIL (37 - 119)		ND	10	uq/L
Benzo(k)fluoranthene ND 2.0 ug/L Benzo(a)pyrene ND 2.0 ug/L Indeno(1,2,3-cd)pyrene ND 2.0 ug/L Dibenz(a,h)anthracene ND 2.0 ug/L Benzo(ghi)perylene ND 2.0 ug/L PERCENT RECOVERY SURROGATE RECOVERY LIMITS Nitrobenzene-d5 48 DIL (27 - 111) 2-Fluorobiphenyl 51 DIL (28 - 110) Terphenyl-d14 71 DIL (37 - 119)				-
Benzo(a)pyrene ND 2.0 ug/L Indeno(1,2,3-cd)pyrene ND 2.0 ug/L Dibenz(a,h)anthracene ND 2.0 ug/L Benzo(ghi)perylene ND 2.0 ug/L PERCENT RECOVERY SURROGATE RECOVERY LIMITS Nitrobenzene-d5 48 DIL (27 - 111) 2-Fluorobiphenyl 51 DIL (28 - 110) Terphenyl-d14 71 DIL (37 - 119)				-
Indeno(1,2,3-cd)pyrene ND 2.0 ug/L Dibenz(a,h)anthracene ND 2.0 ug/L Benzo(ghi)perylene ND 2.0 ug/L PERCENT RECOVERY SURROGATE RECOVERY LIMITS Nitrobenzene-d5 48 DIL (27 - 111) 2-Fluorobiphenyl 51 DIL (28 - 110) Terphenyl-d14 71 DIL (37 - 119)				-
Dibenz(a,h)anthracene ND 2.0 ug/L Benzo(ghi)perylene ND 2.0 ug/L SURROGATE RECOVERY LIMITS Nitrobenzene-d5 48 DIL (27 - 111) 2-Fluorobiphenyl 51 DIL (28 - 110) Terphenyl-d14 71 DIL (37 - 119)				-
Benzo(ghi)perylene ND 2.0 ug/L PERCENT RECOVERY SURROGATE RECOVERY LIMITS Nitrobenzene-d5 48 DIL (27 - 111) (28 - 110) 2-Fluorobiphenyl 51 DIL (28 - 110) (37 - 119)				
SURROGATE PERCENT RECOVERY Nitrobenzene-d5 48 DIL (27 - 111) 2-Fluorobiphenyl 51 DIL (28 - 110) Terphenyl-d14 71 DIL (37 - 119)				
SURROGATE RECOVERY LIMITS Nitrobenzene-d5 48 DIL (27 - 111) 2-Fluorobiphenyl 51 DIL (28 - 110) Terphenyl-d14 71 DIL (37 - 119)				
SURROGATE RECOVERY LIMITS Nitrobenzene-d5 48 DIL (27 - 111) 2-Fluorobiphenyl 51 DIL (28 - 110) Terphenyl-d14 71 DIL (37 - 119)		PERCENT	RECOVERY	
Nitrobenzene-d5 48 DIL (27 - 111) 2-Fluorobiphenyl 51 DIL (28 - 110) Terphenyl-d14 71 DIL (37 - 119)	SURROGATE			_
2-Fluorobiphenyl 51 DIL (28 - 110) Terphenyl-d14 71 DIL (37 - 119)				_
Terphenyl-d14 71 DIL (37 - 119)			· ·	
2-Fluorophenol 34 DIL (10 - 110)			,	
2,4,6-Tribromophenol 74 DIL (22 - 120)	-			

Client Sample ID: MW-10

GC/MS Semivolatiles

Lot-Sample #...: A0K180499-001 Work Order #...: L98J01A7 Matrix.....: WG

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

MW-10

GC/MS Semivolatiles

Lot-Sample #: A0K180499-001 Work Order #: L98J01A7 Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED		RETENTION	
PARAMETER	CAS #	RESULT		TIME	UNITS
Unknown		2200 J	M	3.5728	ug/L
2-Propenamide, N-(1,1-dimet	2873-97-4	70 NJ	M	4.3965	ug/L
Unknown		120 J	M	4.5676	ug/L
Unknown		130 J	M	5.3164	ug/L
Unknown		130 J	M	5.3378	ug/L
Unknown		150 J	M	5.6052	ug/L
Unknown		140 J	M	5.7069	ug/L
Unknown		99 J	M	6.1241	ug/L
Unknown		28 J	M	6.4396	ug/L
Unknown		38 J	M	6.6001	ug/L
Unknown		48 J	M	6.7499	ug/L
Unknown		47 J	M	6.8675	ug/L
Unknown		33 J	M	7.0494	ug/L
Unknown		160 J	M	7.1617	ug/L
Unknown		43 J	M	7.2954	ug/L
Unknown		700 J	M	7.5735	ug/L
Unknown		91 J	M	8.1833	ug/L
Unknown		120 J	M	8.2956	ug/L
Unknown		50 J	M	8.4775	ug/L
Unknown		160 J	M	8.5042	ug/L
Unknown		120 J	M	8.5577	ug/L
Unknown		37 J	M	8.7342	ug/L
Unknown		29 J	M	8.8626	ug/L
Unknown		1200 J	M	9.0551	ug/L
NOTE(S):					

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-10

TOTAL Metals

Lot-Sample #...: A0K180499-001 **Matrix.....:** WG

Date Sampled...: 11/16/10 08:15 Date Received..: 11/18/10

PARAMETER	RESULT	REPORTING LIMIT		METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Arsenic	: 0323019 ND	10.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J01AA
Lead	ND	3.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J01AC
Selenium	ND	5.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J01AD
Thallium	10.1 Ј	10.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J01AE
Antimony	ND	60.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J01AF
Beryllium	ND	5.0 Dilution Facto	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J01AG
Cadmium	ND	5.0 Dilution Facto	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J01AH
Chromium	ND	10.0 Dilution Facto	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J01AJ
Copper	ND	25.0 Dilution Facto	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J01AK
Nickel	16.2 B	40.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J01AL
Silver	ND	10.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J01AM
Zinc	ND	20.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J01AN
Mercury	ND	0.20 Dilution Factor	ug/L or: 1	SW846 7470A	11/19-11/22/10	L98J01A4
MOTE (C)						

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: MW-10

DISSOLVED Metals

Lot-Sample #...: A0K180499-001 **Matrix.....:** WG

Date Sampled...: 11/16/10 08:15 Date Received..: 11/18/10

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOI)	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #	: 0323019						
Arsenic	4.1 B	10.0 Dilution Facto	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98J01AP
Lead	ND	3.0 Dilution Factor	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98J01AQ
Selenium	ND	5.0 Dilution Factor	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98J01AR
Thallium	7.2 B,J	10.0 Dilution Facto	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98J01AT
Antimony	3.0 B	60.0 Dilution Factor	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98J01AU
Beryllium	ND	5.0 Dilution Facto	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98J01AV
Cadmium	ND	5.0 Dilution Facto	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98J01AW
Chromium	ND	10.0 Dilution Facto	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98J01AX
Copper	ND	25.0 Dilution Factor	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98J01A0
Nickel	16.8 в	40.0 Dilution Factor	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98J01A1
Silver	ND	10.0 Dilution Facto	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98J01A2
Zinc	6.5 B	20.0 Dilution Facto	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98J01A3
Mercury	ND	0.20 Dilution Factor	ug/L or: 1	SW846	7470A	11/19-11/22/10	L98J01A5
MOME (G) .							

NOTE(S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-14

GC/MS Volatiles

Lot-Sample #...: A0K180499-002 Work Order #...: L98J31AH Matrix.....: WG

Date Sampled...: 11/16/10 09:53 Date Received..: 11/18/10
Prep Date....: 11/30/10 Analysis Date..: 11/30/10

Prep Batch #...: 0334286

Dilution Factor: 1 Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acetone	13	10	ug/L
Acetonitrile	ND	20	ug/L
Acrolein	ND	20	ug/L
Acrylonitrile	ND	20	ug/L
Allyl chloride	ND	2.0	ug/L
Benzene	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	ug/L
2-Butanone (MEK)	0.57 J	10	ug/L
Carbon disulfide	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Chloroethane	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
Chloroprene	ND	2.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,2-Dibromo-3-chloro-	ND	2.0	ug/L
propane			
1,2-Dibromoethane (EDB)	ND	1.0	ug/L
Dibromomethane	ND	1.0	ug/L
trans-1,4-Dichloro-	ND	1.0	ug/L
2-butene			
Dichlorodifluoromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
1,4-Dioxane	ND	200	ug/L
Ethylbenzene	ND	1.0	ug/L
Ethyl methacrylate	ND	1.0	ug/L
2-Hexanone	ND	10	ug/L
Iodomethane	ND	1.0	ug/L
Isobutyl alcohol	ND	50	ug/L
Methacrylonitrile	ND	2.0	ug/L

Client Sample ID: MW-14

GC/MS Volatiles

Lot-Sample #...: A0K180499-002 Work Order #...: L98J31AH Matrix.....: WG

		REPORTING	
PARAMETER	RESULT	LIMIT	<u>UNITS</u>
Methylene chloride	ND	1.0	ug/L
Methyl methacrylate	ND	2.0	ug/L
4-Methyl-2-pentanone	0.68 J	10	ug/L
(MIBK)			
Propionitrile	ND	4.0	ug/L
Styrene	ND	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
Vinyl acetate	ND	2.0	ug/L
Vinyl chloride	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Dibromofluoromethane	92	(75 - 121)	
1,2-Dichloroethane-d4	84	(63 - 129)	
Toluene-d8	87	(74 - 115)	
4-Bromofluorobenzene	106	(66 - 117)	

NOTE(S):

J Estimated result. Result is less than RL.

MW-14

GC/MS Volatiles

Lot-Sample #: A0K180499-002 Work Order #: L98J31AH Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	
PARAMETER	CAS #	RESULT	TIME	UNITS
1-Propene, 2-methyl-	115-11-7	4.3 NJ N	1 1.6941	ug/L
tert-Butyl Alcohol		350 Ç	3.173	ug/L

NOTE(S):

Q: Result was quantitated against the response factor of a calibration standard.

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-14

GC/MS Semivolatiles

Lot-Sample #...: A0K180499-002 Work Order #...: L98J31AJ Matrix.....: WG

Date Sampled...: 11/16/10 09:53 Date Received..: 11/18/10
Prep Date.....: 11/22/10 Analysis Date..: 12/01/10

Prep Batch #...: 0325050

Dilution Factor: 20 Method.....: SW846 8270C

		REPORTING	
PARAMETER	RESULT	LIMIT	<u>UNITS</u>
Phenol	ND	20	ug/L
bis(2-Chloroethyl)-	ND	20	ug/L
ether			
2-Chlorophenol	ND	20	ug/L
1,3-Dichlorobenzene	ND	20	ug/L
1,4-Dichlorobenzene	ND	20	ug/L
1,2-Dichlorobenzene	ND	20	ug/L
2-Methylphenol	ND	20	ug/L
2,2'-oxybis(1-Chloro-	ND	20	ug/L
propane)			
4-Methylphenol	ND	20	ug/L
N-Nitrosodi-n-propyl-	ND	20	ug/L
amine			
Hexachloroethane	ND	20	ug/L
Nitrobenzene	ND	20	ug/L
Isophorone	ND	20	ug/L
2-Nitrophenol	ND	40	ug/L
2,4-Dimethylphenol	ND	40	ug/L
bis(2-Chloroethoxy)	ND	20	ug/L
methane			
2,4-Dichlorophenol	ND	40	ug/L
1,2,4-Trichloro-	ND	20	ug/L
benzene			
Naphthalene	ND	4.0	ug/L
4-Chloroaniline	ND	40	ug/L
Hexachlorobutadiene	ND	20	ug/L
4-Chloro-3-methylphenol	ND	40	ug/L
2-Methylnaphthalene	ND	4.0	ug/L
Hexachlorocyclopenta-	ND	200	ug/L
diene			
2,4,6-Trichloro-	ND	100	ug/L
phenol			
2,4,5-Trichloro-	ND	100	ug/L
phenol			
2-Chloronaphthalene	ND	20	ug/L
2-Nitroaniline	ND	40	ug/L
Dimethyl phthalate	ND	20	ug/L
Acenaphthylene	ND	4.0	ug/L
2,6-Dinitrotoluene	ND	100	ug/L

Client Sample ID: MW-14

GC/MS Semivolatiles

Lot-Sample #: A0K180499-002 Work Order #: L98J31AJ Matrix:	e #: A0K180499-002 Work Order #: L98J31AJ Matrix	: WC
--	--	------

		REPORTING		
PARAMETER	RESULT	LIMIT UNITS		
3-Nitroaniline	ND	40	ug/L	
Acenaphthene	ND	4.0	ug/L	
2,4-Dinitrophenol	ND	100	ug/L	
4-Nitrophenol	ND	100	ug/L	
Dibenzofuran	ND	20	ug/L	
2,4-Dinitrotoluene	ND	100	ug/L	
Diethyl phthalate	ND	20	ug/L	
4-Chlorophenyl phenyl	ND	40	ug/L	
ether	ND	10	ug/ 1	
Fluorene	ND	4.0	ug/L	
4-Nitroaniline	ND	40	ug/L	
4,6-Dinitro-	ND	100	ug/L ug/L	
2-methylphenol	ND	100	ug/п	
N-Nitrosodiphenylamine	ND	20	110 / T	
4-Bromophenyl phenyl	ND ND	40	ug/L	
ether	ND	40	ug/L	
Hexachlorobenzene	ND	4.0	ug/L	
Pentachlorophenol	ND	100	ug/L	
Phenanthrene	ND	4.0	ug/L	
Anthracene	ND	4.0	ug/L	
Carbazole	ND	20	ug/L	
Di-n-butyl phthalate	ND	20	ug/L	
Fluoranthene	ND	4.0	ug/L	
	ND	4.0		
Pyrene		20	ug/L	
Butyl benzyl phthalate 3,3'-Dichlorobenzidine	ND	100	ug/L	
Benzo(a)anthracene	ND		ug/L	
	ND	4.0	ug/L	
Chrysene	ND	4.0	ug/L	
<pre>bis(2-Ethylhexyl) phthalate</pre>	ND	40	ug/L	
Di-n-octyl phthalate	ND	20	110 /T	
	ND		ug/L	
Benzo(b)fluoranthene	ND	4.0	ug/L	
Benzo(k)fluoranthene	ND	4.0	ug/L	
Benzo(a)pyrene	ND	4.0	ug/L	
Indeno(1,2,3-cd)pyrene	ND	4.0	ug/L	
Dibenz(a,h)anthracene	ND	4.0	ug/L	
Benzo(ghi)perylene	ND	4.0	ug/L	
	חבים⊄ביאייי	DECOMEDM		
CIIDDOCATE	PERCENT	RECOVERY		
SURROGATE Nitrobenzene-d5	<u>RECOVERY</u> 55 DIL	<u>LIMITS</u>	-	
		(27 - 111 (28 - 110		
2-Fluorobiphenyl Terphenyl-d14	55 DIL	·		
Phenol-d5	69 DIL	(37 - 119		
	49 DIL	(10 - 110		
2-Fluorophenol	0.0 DIL,*	(10 - 110		
2,4,6-Tribromophenol	69 DIL	(22 - 120)	

Client Sample ID: MW-14

GC/MS Semivolatiles

Lot-Sample #...: A0K180499-002 **Work Order** #...: L98J31AJ **Matrix.....**: WG

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

^{*} Surrogate recovery is outside stated control limits.

MW-14

GC/MS Semivolatiles

Lot-Sample #: A0K180499-002 Work Order #: L98J31AJ Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED		RETENTION	
PARAMETER	CAS #	RESULT		TIME	UNITS
Unknown		570 J	M	4.4839	ug/L
Unknown		150 J	M	4.532	ug/L
Unknown		160 J	M	4.6283	ug/L
Unknown		1300 J	M	5.3504	ug/L
Unknown		860 J	M	5.3825	ug/L
Unknown		71 J	M	5.5964	ug/L
Unknown		140 J	M	5.6499	ug/L
Unknown		230 J	M	5.7141	ug/L
Unknown		140 J	M	5.7569	ug/L
Unknown		170 J	M	5.8906	ug/L
Unknown		110 J	M	6.1687	ug/L
Unknown		180 J	M	6.7784	ug/L
Unknown		150 J	M	6.8961	ug/L
Unknown		2700 J	M	7.6021	ug/L
Unknown		93 J	M	8.5488	ug/L
Unknown		330 J	M	9.0784	ug/L
Unknown		130 J	M	9.5597	ug/L
Unknown		230 J	M	10.137	ug/L
Unknown		310 J	M	10.543	ug/L
Unknown		280 J	M	10.864	ug/L
Unknown		210 J	M	11.33	ug/L
Unknown		92 J	M	11.715	ug/L
Unknown		190 J	M	11.87	ug/L
Unknown		75 J	M	12.26	ug/L
Unknown		81 J	M	12.512	ug/L
Unknown Unknown Unknown Unknown Unknown Unknown		310 J 280 J 210 J 92 J 190 J 75 J	M M M M M	10.543 10.864 11.33 11.715 11.87 12.26	ug/L ug/L ug/L ug/L ug/L ug/L ug/L

NOTE(S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-14

TOTAL Metals

Lot-Sample #...: A0K180499-002 Matrix.....: WG

Date Sampled...: 11/16/10 09:53 Date Received..: 11/18/10

PARAMETER	RESULT	REPORTING	G UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Arsenic	: 0323019 11.3	10.0 Dilution Fact	_	SW846 6010B	11/19-11/23/10	L98J31AK
Lead	ND	3.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J31AL
Selenium	ND	5.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J31AM
Thallium	9.0 B,J	10.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J31AN
Antimony	ND	60.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J31AP
Beryllium	ND	5.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J31AQ
Cadmium	ND	5.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J31AR
Chromium	ND	10.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J31AT
Copper	ND	25.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J31AU
Nickel	18.7 В	40.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J31AV
Silver	ND	10.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J31AW
Zinc	12.2 B	20.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J31AX
Mercury	ND	0.20 Dilution Fact	ug/L or: 1	SW846 7470A	11/19-11/22/10	L98J31AF

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-14

DISSOLVED Metals

Lot-Sample #...: A0K180499-002 **Matrix.....:** WG

Date Sampled...: 11/16/10 09:53 Date Received..: 11/18/10

PARAMETER	RESULT	REPORTING	G UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch # Arsenic	: 0323019 10.8	10.0 Dilution Fact	_	SW846 6010B	11/19-11/23/10 L98J31A0
Lead	ND	3.0 Dilution Fact	ug/L .or: 1	SW846 6010B	11/19-11/23/10 L98J31A1
Selenium	ND	5.0 Dilution Fact	ug/L .or: 1	SW846 6010B	11/19-11/23/10 L98J31A2
Thallium	9.1 B,J	10.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10 L98J31A3
Antimony	ND	60.0 Dilution Fact	ug/L .or: 1	SW846 6010B	11/19-11/23/10 L98J31A4
Beryllium	ND	5.0 Dilution Fact	ug/L .or: 1	SW846 6010B	11/19-11/23/10 L98J31A5
Cadmium	ND	5.0 Dilution Fact	ug/L .or: 1	SW846 6010B	11/19-11/23/10 L98J31A6
Chromium	ND	10.0 Dilution Fact	ug/L .or: 1	SW846 6010B	11/19-11/23/10 L98J31A7
Copper	ND	25.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10 L98J31AA
Nickel	19.5 в	40.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10 L98J31AC
Silver	ND	10.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10 L98J31AD
Zinc	5.1 B	20.0 Dilution Fact	ug/L .or: 1	SW846 6010B	11/19-11/23/10 L98J31AE
Mercury	ND	0.20 Dilution Fact	ug/L or: 1	SW846 7470A	11/19-11/22/10 L98J31AG

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-15

GC/MS Volatiles

Lot-Sample #...: A0K180499-003 Work Order #...: L98J41AH Matrix.....: WG

Date Sampled...: 11/16/10 11:15 Date Received..: 11/18/10
Prep Date.....: 11/30/10 Analysis Date..: 11/30/10

Prep Batch #...: 0334286

Dilution Factor: 1 Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acetone	1.1 J	10	ug/L
Acetonitrile	ND	20	ug/L
Acrolein	ND	20	ug/L
Acrylonitrile	ND	20	ug/L
Allyl chloride	ND	2.0	ug/L
Benzene	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	ug/L
2-Butanone (MEK)	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Chloroethane	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
Chloroprene	ND	2.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,2-Dibromo-3-chloro-	ND	2.0	ug/L
propane			
1,2-Dibromoethane (EDB)	ND	1.0	ug/L
Dibromomethane	ND	1.0	ug/L
trans-1,4-Dichloro-	ND	1.0	ug/L
2-butene			
Dichlorodifluoromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
1,4-Dioxane	ND	200	ug/L
Ethylbenzene	ND	1.0	ug/L
Ethyl methacrylate	ND	1.0	ug/L
2-Hexanone	ND	10	ug/L
Iodomethane	ND	1.0	ug/L
Isobutyl alcohol	ND	50	ug/L
Methacrylonitrile	ND	2.0	ug/L

Client Sample ID: MW-15

GC/MS Volatiles

Lot-Sample #...: A0K180499-003 Work Order #...: L98J41AH Matrix.....: WG

		REPORTING	
PARAMETER	RESULT	LIMIT	<u>UNITS</u>
Methylene chloride	ND	1.0	ug/L
Methyl methacrylate	ND	2.0	ug/L
4-Methyl-2-pentanone	ND	10	ug/L
(MIBK)			
Propionitrile	ND	4.0	ug/L
Styrene	ND	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
Vinyl acetate	ND	2.0	ug/L
Vinyl chloride	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Dibromofluoromethane	92	(75 - 121)	
1,2-Dichloroethane-d4	81	(63 - 129)	
Toluene-d8	88	(74 - 115)	
4-Bromofluorobenzene	101	(66 - 117)	

J Estimated result. Result is less than RL.

MW-15

GC/MS Volatiles

Lot-Sample #: A0K180499-003	Work Order #: L98J41AH	Matrix: WG
MASS SPECTROMETER/DATA SYSTEM ((MSDS) TENTATIVELY IDENTIFIED	COMPOUNDS
PARAMETER None	ESTIMATED CAS # RESULT	RETENTION TIME UNITS ug/L

Client Sample ID: MW-15

GC/MS Semivolatiles

Lot-Sample #...: A0K180499-003 Work Order #...: L98J41AJ Matrix.....: WG

Date Sampled...: 11/16/10 11:15 Date Received..: 11/18/10
Prep Date.....: 11/22/10 Analysis Date..: 12/01/10

Prep Batch #...: 0325050

Dilution Factor: 1 Method.....: SW846 8270C

		REPORTING	
PARAMETER	RESULT	LIMIT	<u>UNITS</u>
Phenol	ND	1.0	ug/L
bis(2-Chloroethyl)-	ND	1.0	ug/L
ether			
2-Chlorophenol	ND	1.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
2-Methylphenol	ND	1.0	ug/L
2,2'-oxybis(1-Chloro-	ND	1.0	ug/L
propane)			
4-Methylphenol	ND	1.0	ug/L
N-Nitrosodi-n-propyl-	ND	1.0	ug/L
amine			
Hexachloroethane	ND	1.0	ug/L
Nitrobenzene	ND	1.0	ug/L
Isophorone	ND	1.0	ug/L
2-Nitrophenol	ND	2.0	ug/L
2,4-Dimethylphenol	ND	2.0	ug/L
bis(2-Chloroethoxy)	ND	1.0	ug/L
methane			
2,4-Dichlorophenol	ND	2.0	ug/L
1,2,4-Trichloro-	ND	1.0	ug/L
benzene			
Naphthalene	ND	0.20	ug/L
4-Chloroaniline	ND	2.0	ug/L
Hexachlorobutadiene	ND	1.0	ug/L
4-Chloro-3-methylphenol	ND	2.0	ug/L
2-Methylnaphthalene	ND	0.20	ug/L
Hexachlorocyclopenta-	ND	10	ug/L
diene			
2,4,6-Trichloro-	ND	5.0	ug/L
phenol			
2,4,5-Trichloro-	ND	5.0	ug/L
phenol			
2-Chloronaphthalene	ND	1.0	ug/L
2-Nitroaniline	ND	2.0	ug/L
Dimethyl phthalate	ND	1.0	ug/L
Acenaphthylene	ND	0.20	ug/L
2,6-Dinitrotoluene	ND	5.0	ug/L

Client Sample ID: MW-15

GC/MS Semivolatiles

Lot-Sample #...: A0K180499-003 Work Order #...: L98J41AJ Matrix.....: WG

		DEDODETN	
DADAMIIII D	DEGILE	REPORTIN	
PARAMETER 3-Nitroaniline	RESULT	LIMIT	<u>UNITS</u>
	ND	2.0 0.20	ug/L
Acenaphthene	ND		ug/L
2,4-Dinitrophenol	ND	5.0	ug/L
4-Nitrophenol	ND	5.0	ug/L
Dibenzofuran	ND	1.0	ug/L
2,4-Dinitrotoluene	ND	5.0	ug/L
Diethyl phthalate	ND	1.0	ug/L
4-Chlorophenyl phenyl	ND	2.0	ug/L
ether			
Fluorene	ND	0.20	ug/L
4-Nitroaniline	ND	2.0	ug/L
4,6-Dinitro-	ND	5.0	ug/L
2-methylphenol			
N-Nitrosodiphenylamine	ND	1.0	ug/L
4-Bromophenyl phenyl	ND	2.0	ug/L
ether			
Hexachlorobenzene	ND	0.20	ug/L
Pentachlorophenol	ND	5.0	ug/L
Phenanthrene	ND	0.20	ug/L
Anthracene	ND	0.20	ug/L
Carbazole	ND	1.0	ug/L
Di-n-butyl phthalate	ND	1.0	ug/L
Fluoranthene	ND	0.20	ug/L
Pyrene	ND	0.20	ug/L
Butyl benzyl phthalate	ND	1.0	ug/L
3,3'-Dichlorobenzidine	ND	5.0	ug/L
Benzo(a)anthracene	ND	0.20	ug/L
Chrysene	ND	0.20	ug/L
bis(2-Ethylhexyl)	ND	2.0	ug/L
phthalate			
Di-n-octyl phthalate	ND	1.0	ug/L
Benzo(b)fluoranthene	ND	0.20	ug/L
Benzo(k)fluoranthene	ND	0.20	ug/L
Benzo(a)pyrene	ND	0.20	ug/L
Indeno(1,2,3-cd)pyrene	ND	0.20	ug/L
Dibenz(a,h)anthracene	ND	0.20	ug/L
Benzo(ghi)perylene	ND	0.20	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	53	(27 - 11	1)
2-Fluorobiphenyl	57	(28 - 11	-
Terphenyl-d14	75	(37 - 11	
Phenol-d5	54	(10 - 11	
2-Fluorophenol	27	(10 - 11	
2,4,6-Tribromophenol	74	(22 - 12	
, ,	· -	,	- 1

MW-15

GC/MS Semivolatiles

Lot-Sample #: A0K180499-003 Work Order #: L98J41AJ Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

	ESTIMATED		RETENTION	
CAS #	RESULT		TIME	UNITS
	39 Ј	М	3.7138	ug/L
	4.6 J	Μ	4.0775	ug/L
	3.9 J	Μ	4.3877	ug/L
2873-97-4	3.3 NJ	Μ	4.4358	ug/L
	24 J	M	4.484	ug/L
	5.5 J	Μ	4.5321	ug/L
	11 J	Μ	4.6391	ug/L
	3.7 J	Μ	4.9386	ug/L
	51 J	Μ	5.3505	ug/L
	32 J	Μ	5.3825	ug/L
	4.8 J	Μ	5.4628	ug/L
	2.9 J	Μ	5.6553	ug/L
	8.4 J	Μ	5.7142	ug/L
	8.3 J	Μ	5.7676	ug/L
	4.4 J	Μ	5.9067	ug/L
	2.8 J	Μ	6.0725	ug/L
	17 J	Μ	6.1688	ug/L
	6.5 J	Μ	6.4844	ug/L
	6.1 J	Μ	6.7839	ug/L
	5.1 J	Μ	6.9016	ug/L
	59 J	Μ	7.6076	ug/L
	13 Ј	Μ	8.5436	ug/L
	2.8 J	M	8.7736	ug/L
	3.9 J	M	8.9073	ug/L
	19 J	M	9.0731	ug/L
		CAS # RESULT 39 J 4.6 J 3.9 J 2873-97-4 3.3 NJ 24 J 5.5 J 11 J 3.7 J 51 J 32 J 4.8 J 2.9 J 8.4 J 8.3 J 4.4 J 2.8 J 17 J 6.5 J 6.1 J 5.1 J 59 J 13 J 2.8 J 3.9 J	CAS # RESULT 39 J M 4.6 J M 3.9 J M 2873-97-4 3.3 NJ M 24 J M 5.5 J M 11 J M 3.7 J M 51 J M 32 J M 4.8 J M 2.9 J M 8.4 J M 8.3 J M 4.4 J M 2.8 J M 17 J M 6.5 J M 6.1 J M 5.1 J M 5.1 J M 5.1 J M 5.1 J M 6.5 J M 6.1 J M 5.1 J M 5.	CAS # RESULT TIME 39 J M 3.7138 4.6 J M 4.0775 3.9 J M 4.3877 2873-97-4 3.3 NJ M 4.4358 24 J M 4.484 5.5 J M 4.5321 11 J M 4.6391 3.7 J M 4.9386 51 J M 5.3505 32 J M 5.3505 32 J M 5.4628 2.9 J M 5.6553 8.4 J M 5.7142 8.3 J M 5.7676 4.4 J M 5.70676 4.4 J M 5.9067 2.8 J M 6.0725 17 J M 6.1688 6.5 J M 6.4844 6.1 J M 6.7839 5.1 J M 6.9016 59 J M 7.6076 13 J M 8.5436 2.8 J M 8.7736 3.9 J M 8.9073

NOTE(S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-15

TOTAL Metals

Lot-Sample #...: A0K180499-003 **Matrix.....:** WG

Date Sampled...: 11/16/10 11:15 Date Received..: 11/18/10

PARAMETER	RESULT	REPORTING	G <u>UNITS</u>	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #	: 0323019					
Arsenic	ND	10.0 Dilution Fact	_	SW846 6010B	11/19-11/23/10	L98J41AK
Lead	ND	3.0 Dilution Fact	ug/L cor: 1	SW846 6010B	11/19-11/23/10	L98J41AL
Selenium	ND	5.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J41AM
Thallium	5.1 B,J	10.0 Dilution Fact	ug/L	SW846 6010B	11/19-11/23/10	L98J41AN
Antimony	ND	60.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J41AP
Beryllium	ND	5.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J41AQ
Cadmium	ND	5.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J41AR
Chromium	ND	10.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J41AT
Copper	ND	25.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J41AU
Nickel	8.0 B	40.0 Dilution Fact	ug/L	SW846 6010B	11/19-11/23/10	L98J41AV
Silver	ND	10.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J41AW
Zinc	12.7 В	20.0 Dilution Fact	ug/L	SW846 6010B	11/19-11/23/10	L98J41AX
Mercury	ND	0.20 Dilution Fact	ug/L .or: 1	SW846 7470A	11/19-11/22/10	L98J41AF

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-15

DISSOLVED Metals

Lot-Sample #...: A0K180499-003 **Matrix.....:** WG

Date Sampled...: 11/16/10 11:15 Date Received..: 11/18/10

		REPORTIN	1G		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Prep Batch #	• 0323019					
Arsenic	3.7 B	10.0 Dilution Fac	_	SW846 6010B	11/19-11/23/10	L98J41A0
Lead	ND	3.0 Dilution Fac	ug/L stor: 1	SW846 6010B	11/19-11/23/10	L98J41A1
Selenium	ND	5.0 Dilution Fac	ug/L etor: 1	SW846 6010B	11/19-11/23/10	L98J41A2
Thallium	ND	10.0 Dilution Fac	ug/L etor: 1	SW846 6010B	11/19-11/23/10	L98J41A3
Antimony	ND	60.0 Dilution Fac	ug/L ctor: 1	SW846 6010B	11/19-11/23/10	L98J41A4
Beryllium	ND	5.0 Dilution Fac	ug/L ctor: 1	SW846 6010B	11/19-11/23/10	L98J41A5
Cadmium	ND	5.0 Dilution Fac	ug/L etor: 1	SW846 6010B	11/19-11/23/10	L98J41A6
Chromium	ND	10.0 Dilution Fac	ug/L etor: 1	SW846 6010B	11/19-11/23/10	L98J41A7
Copper	ND	25.0 Dilution Fac	ug/L etor: 1	SW846 6010B	11/19-11/23/10	L98J41AA
Nickel	7.0 в	40.0 Dilution Fac	ug/L	SW846 6010B	11/19-11/23/10	L98J41AC
Silver	ND	10.0 Dilution Fac	ug/L ctor: 1	SW846 6010B	11/19-11/23/10	L98J41AD
Zinc	5.2 B	20.0 Dilution Fac	ug/L	SW846 6010B	11/19-11/23/10	L98J41AE
Mercury	ND	0.20 Dilution Fac	ug/L etor: 1	SW846 7470A	11/19-11/22/10	L98J41AG
NOTE(S):						

B Estimated result. Result is less than RL.

Client Sample ID: MW-13

GC/MS Volatiles

Lot-Sample #...: A0K180499-004 Work Order #...: L98J61AH Matrix.....: WG

Date Sampled...: 11/17/10 09:59 Date Received..: 11/18/10 Prep Date....: 11/30/10 Analysis Date..: 11/30/10

Prep Batch #...: 0335126

Dilution Factor: 2 Method.....: SW846 8260B

PARAMETER			REPORTIN	G
Acetonitrile Acrolein Acrolein Acrolein And Acrylonitrile ND Allyl chloride ND Allyl	PARAMETER	RESULT	LIMIT	<u>UNITS</u>
Acrolein ND 40 ug/L Acrylonitrile ND 40 ug/L Allyl chloride ND 4.0 ug/L Benzene ND 2.0 ug/L Bromodichloromethane ND 2.0 ug/L Bromoform ND 2.0 ug/L Bromomethane ND 2.0 ug/L Station (MEK) ND 2.0 ug/L Carbon disulfide ND 2.0 ug/L Carbon tetrachloride ND 2.0 ug/L Chlorobenzene ND 2.0 ug/L Chloropenzene ND 2.0 ug/L Chloroperne ND 2.0 ug/L Chloropene ND 4.0 ug/L Chloropene ND 4.0 ug/L Dibromochloromethane ND 2.0 ug/L 1,2-Dibromo-3-chloro- ND 2.0 ug/L 1,2-Dibromocthane (EDB) ND 2.0 ug/L	Acetone	21	20	ug/L
Acrylonitrile Allyl chloride ND Allyl chloride N	Acetonitrile	ND	40	ug/L
Allyl chloride Benzene ND 2.0 ug/L Benzene ND 2.0 ug/L Bromodichloromethane ND 2.0 ug/L Bromoform ND 2.0 ug/L Bromoform ND 2.0 ug/L Bromomethane ND 2.0 ug/L Bromomethane ND 2.0 ug/L Carbon disulfide ND 2.0 ug/L Carbon tetrachloride ND 2.0 ug/L Chlorobenzene ND 2.0 ug/L Chlorothane ND 2.0 ug/L Chlorothane ND 2.0 ug/L Chloromethane 1,2-Dibromoethane ND 2.0 ug/L Chloromethane ND 2.0 ug/L Chlorothane ND 2.0 ug/	Acrolein	ND	40	ug/L
Benzene ND 2.0	Acrylonitrile	ND	40	ug/L
Bromodichloromethane ND 2.0 ug/L Bromoform ND 2.0 ug/L Bromomethane ND 2.0 ug/L 2-Butanone (MEK) ND 20 ug/L Carbon disulfide ND 2.0 ug/L Carbon tetrachloride ND 2.0 ug/L Chlorobenzene ND 2.0 ug/L Chlorobenzene ND 2.0 ug/L Chloroform ND 2.0 ug/L Chloroform ND 2.0 ug/L Chloroform ND 2.0 ug/L Chloroform ND 2.0 ug/L Chloromethane ND 2.0 ug/L Dibromochloromethane ND 2.0 ug/L 1,2-Dibromo-3-chloro- ND 2.0 ug/L 1,2-Dibromoethane (EDB) ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L 1,1-Dichloroethane ND 2.0	Allyl chloride	ND	4.0	ug/L
Bromoform	Benzene	ND	2.0	ug/L
Bromomethane	Bromodichloromethane	ND	2.0	ug/L
2-Butanone (MEK) ND 20 ug/L Carbon disulfide ND 2.0 ug/L Carbon tetrachloride ND 2.0 ug/L Chlorobenzene ND 2.0 ug/L Chlorobethane ND 2.0 ug/L Chloroform ND 2.0 ug/L Chloroperene ND 2.0 ug/L Chloroperene ND 4.0 ug/L Dibromochloromethane ND 2.0 ug/L Dibromochloromethane ND 2.0 ug/L 1,2-Dibromo-3-chloro- ND 4.0 ug/L 1,2-Dibromoethane ND 2.0 ug/L 1,2-Dibromoethane ND 2.0 ug/L 2-butene Dichlorodifluoromethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L 1,2-Dichlorop	Bromoform	ND	2.0	ug/L
Carbon disulfide ND 2.0 ug/L Carbon tetrachloride ND 2.0 ug/L Chlorobenzene ND 2.0 ug/L Chloroform ND 2.0 ug/L Chloroform ND 2.0 ug/L Chloromethane ND 2.0 ug/L Chloromethane ND 2.0 ug/L Dibromochloromethane ND 2.0 ug/L 1,2-Dibromo-3-chloro- ND 4.0 ug/L propane ND 2.0 ug/L 1,2-Dibromoethane (EDB) ND 2.0 ug/L Dibromoethane (EDB) ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,1-Dichloropropane ND 2.0 ug/L trans-1,2-Dichloropropene ND<	Bromomethane	ND	2.0	ug/L
Carbon tetrachloride ND 2.0 ug/L Chloroethane ND 2.0 ug/L Chloroethane ND 2.0 ug/L Chloroform ND 2.0 ug/L Chloromethane ND 2.0 ug/L Chloroprene ND 4.0 ug/L Dibromochloromethane ND 4.0 ug/L Dibromochloromethane ND 2.0 ug/L 1,2-Dibromo-3-chloro- ND 2.0 ug/L propane 1 2.0 ug/L 1,2-Dibromoethane (EDB) ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L trans-1,2-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene	2-Butanone (MEK)	ND	20	ug/L
Chlorobenzene ND 2.0 ug/L Chloroethane ND 2.0 ug/L Chloroform ND 2.0 ug/L Chloromethane ND 2.0 ug/L Chloroprene ND 4.0 ug/L Dibromochloromethane ND 2.0 ug/L 1,2-Dibromo-3-chloro- ND 4.0 ug/L propane ug/L 1,2-Dibromoethane (EDB) ND 2.0 ug/L Dibromoethane (EDB) ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L trans-1,2-Dichloropropene ND 2.0 ug/L 1,4-Dioxane ND 2.0 ug/L trans-1,3-Dichloropropene N	Carbon disulfide	ND	2.0	ug/L
Chloroethane ND 2.0 ug/L Chloroform ND 2.0 ug/L Chloromethane ND 2.0 ug/L Chloroprene ND 4.0 ug/L Dibromochloromethane ND 2.0 ug/L 1,2-Dibromo-3-chloro- ND 4.0 ug/L propane 1,2-Dibromoethane (EDB) ND 2.0 ug/L 1,2-Dibromoethane (EDB) ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L 1,2-Dichloroethene ND 2.0 ug/L trans-1,2-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L	Carbon tetrachloride	ND	2.0	ug/L
Chloroform ND 2.0 ug/L Chloromethane ND 2.0 ug/L Chloroprene ND 4.0 ug/L Dibromochloromethane ND 2.0 ug/L 1,2-Dibromo-3-chloro- ND 4.0 ug/L propane 1,2-Dibromoethane (EDB) ND 2.0 ug/L Dibromomethane (EDB) ND 2.0 ug/L Lrans-1,4-Dichloro- ND 2.0 ug/L 2-butene Dichlorodifluoromethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L cis-1,3-Dichloropropene ND 2.0 ug/L trans-1,2-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0	Chlorobenzene	ND	2.0	ug/L
Chloromethane ND 2.0 ug/L Chloroprene ND 4.0 ug/L Dibromochloromethane ND 2.0 ug/L 1,2-Dibromo-3-chloro- ND 4.0 ug/L propane ug/L 1,2-Dibromoethane (EDB) ND 2.0 ug/L Dibromomethane ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L 2-butene ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L 1,1-Dichloroptoethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L 1,2-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloroprope	Chloroethane	ND	2.0	ug/L
Chloroprene ND 4.0 ug/L Dibromochloromethane ND 2.0 ug/L 1,2-Dibromo-3-chloro- ND 4.0 ug/L propane ug/L 1,2-Dibromoethane (EDB) ND 2.0 ug/L Dibromomethane ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L 2-butene Dichlorodifluoromethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L 1,2-Dichloropethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L cis-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L 1,4-Dioxane ND 400 ug/L Ethylbenzene ND 2.0 ug/L 2-Hexanone	Chloroform	ND	2.0	ug/L
Dibromochloromethane ND 2.0 ug/L 1,2-Dibromo-3-chloro- ND 4.0 ug/L propane ug/L 1,2-Dibromoethane (EDB) ND 2.0 ug/L Dibromomethane ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L 2-butene ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L 1,2-Dichloroethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L cis-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L 1,4-Dioxane ND 400 ug/L Ethyl methacrylate ND 2.0 ug/L 2-Hexanone ND <	Chloromethane	ND	2.0	ug/L
1,2-Dibromo-3-chloro- propane ND 4.0 ug/L 1,2-Dibromoethane (EDB) ND 2.0 ug/L Dibromomethane ND 2.0 ug/L trans-1,4-Dichloro- 2-butene ND 2.0 ug/L 1,1-Dichloromethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L 1,2-Dichloroethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L cis-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L 1,4-Dioxane ND 400 ug/L Ethyl methacrylate ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L Iodomethane ND 2.0 ug/L Iodomethane ND 2.0 ug/L Iodomethane	Chloroprene	ND	4.0	ug/L
propane 1,2-Dibromoethane (EDB) ND 2.0 ug/L Dibromomethane ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L 2-butene V 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L 1,2-Dichloroethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L cis-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L 1,4-Dioxane ND 400 ug/L Ethylbenzene ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L 2-Hexanone ND 2.0 ug/L Iodomethane ND 2.0 ug/L Iodomethane ND 2.0 ug/L	Dibromochloromethane	ND	2.0	ug/L
1,2-Dibromoethane (EDB) ND 2.0 ug/L Dibromomethane ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L 2-butene Dichlorodifluoromethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L trans-1,2-Dichloroethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L cis-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L 1,4-Dioxane ND 400 ug/L Ethylbenzene ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L 2-Hexanone ND 2.0 ug/L Iodomethane ND 2.0 ug/L Isobutyl alcohol ND 100 ug/L	1,2-Dibromo-3-chloro-	ND	4.0	ug/L
Dibromomethane ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L 2-butene Dichlorodifluoromethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L 1,2-Dichloroethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L 1,2-Dichloropropene ND 2.0 ug/L 1,4-Dioxane ND 2.0 u	propane			
trans-1,4-Dichloro- 2-butene Dichlorodifluoromethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L trans-1,2-Dichloroethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,4-Dioxane ND 400 ug/L Ethylbenzene ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L Iodomethane ND 2.0 ug/L Iodomethane ND 2.0 ug/L	1,2-Dibromoethane (EDB)	ND	2.0	ug/L
Dichlorodifluoromethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L trans-1,2-Dichloroethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,4-Dioxane ND 400 ug/L Ethylbenzene ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L Iodomethane ND 2.0 ug/L Iodomethane ND 2.0 ug/L	Dibromomethane	ND	2.0	ug/L
Dichlorodifluoromethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L trans-1,2-Dichloroethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L cis-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L Ethylbenzene ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L 2-Hexanone ND 2.0 ug/L Iodomethane ND 2.0 ug/L Isobutyl alcohol ND 100 ug/L	trans-1,4-Dichloro-	ND	2.0	ug/L
1,1-DichloroethaneND2.0ug/L1,2-DichloroethaneND2.0ug/L1,1-DichloroetheneND2.0ug/Ltrans-1,2-DichloroetheneND2.0ug/L1,2-DichloropropaneND2.0ug/Lcis-1,3-DichloropropeneND2.0ug/Ltrans-1,3-DichloropropeneND2.0ug/L1,4-DioxaneND400ug/LEthylbenzeneND2.0ug/LEthyl methacrylateND2.0ug/L2-HexanoneND20ug/LIodomethaneND2.0ug/LIsobutyl alcoholND100ug/L	2-butene			
1,2-DichloroethaneND2.0ug/L1,1-DichloroetheneND2.0ug/Ltrans-1,2-DichloroetheneND2.0ug/L1,2-DichloropropaneND2.0ug/Lcis-1,3-DichloropropeneND2.0ug/Ltrans-1,3-DichloropropeneND2.0ug/L1,4-DioxaneND400ug/LEthylbenzeneND2.0ug/LEthyl methacrylateND2.0ug/L2-HexanoneND20ug/LIodomethaneND2.0ug/LIsobutyl alcoholND100ug/L	Dichlorodifluoromethane	ND	2.0	ug/L
1,1-Dichloroethene ND 2.0 ug/L trans-1,2-Dichloroethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L cis-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L 1,4-Dioxane ND 400 ug/L Ethylbenzene ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L 2-Hexanone ND 2.0 ug/L Iodomethane ND 2.0 ug/L Isobutyl alcohol ND 100 ug/L	1,1-Dichloroethane	ND	2.0	ug/L
trans-1,2-Dichloroethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L cis-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L 1,4-Dioxane ND 400 ug/L Ethylbenzene ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L 2-Hexanone ND 2.0 ug/L Iodomethane ND 2.0 ug/L Isobutyl alcohol ND 100 ug/L	1,2-Dichloroethane	ND	2.0	ug/L
1,2-DichloropropaneND2.0ug/Lcis-1,3-DichloropropeneND2.0ug/Ltrans-1,3-DichloropropeneND2.0ug/L1,4-DioxaneND400ug/LEthylbenzeneND2.0ug/LEthyl methacrylateND2.0ug/L2-HexanoneND20ug/LIodomethaneND2.0ug/LIsobutyl alcoholND100ug/L	1,1-Dichloroethene	ND	2.0	ug/L
cis-1,3-DichloropropeneND2.0ug/Ltrans-1,3-DichloropropeneND2.0ug/L1,4-DioxaneND400ug/LEthylbenzeneND2.0ug/LEthyl methacrylateND2.0ug/L2-HexanoneND20ug/LIodomethaneND2.0ug/LIsobutyl alcoholND100ug/L	trans-1,2-Dichloroethene	ND	2.0	ug/L
trans-1,3-Dichloropropene ND 2.0 ug/L 1,4-Dioxane ND 400 ug/L Ethylbenzene ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L 2-Hexanone ND 20 ug/L Iodomethane ND 2.0 ug/L Isobutyl alcohol ND 100 ug/L	1,2-Dichloropropane	ND	2.0	ug/L
1,4-Dioxane ND 400 ug/L Ethylbenzene ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L 2-Hexanone ND 20 ug/L Iodomethane ND 20 ug/L Isobutyl alcohol ND 100 ug/L	cis-1,3-Dichloropropene	ND	2.0	ug/L
Ethylbenzene ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L 2-Hexanone ND 20 ug/L Iodomethane ND 2.0 ug/L Isobutyl alcohol ND 100 ug/L	trans-1,3-Dichloropropene	ND	2.0	ug/L
Ethyl methacrylate ND 2.0 ug/L 2-Hexanone ND 20 ug/L lodomethane ND 2.0 ug/L Isobutyl alcohol ND 100 ug/L	1,4-Dioxane	ND	400	ug/L
2-Hexanone ND 20 ug/L Iodomethane ND 2.0 ug/L Isobutyl alcohol ND 100 ug/L	Ethylbenzene	ND	2.0	ug/L
IodomethaneND2.0ug/LIsobutyl alcoholND100ug/L	Ethyl methacrylate	ND		ug/L
Isobutyl alcohol ND 100 ug/L	2-Hexanone	ND		ug/L
	Iodomethane	ND	2.0	ug/L
Methacrylonitrile ND 4.0 ug/L	Isobutyl alcohol	ND	100	ug/L
	Methacrylonitrile	ND	4.0	ug/L

Client Sample ID: MW-13

GC/MS Volatiles

Lot-Sample #...: A0K180499-004 Work Order #...: L98J61AH Matrix.....: WG

		REPORTIN	·G
PARAMETER	RESULT	LIMIT	UNITS
Methylene chloride	ND	2.0	ug/L
Methyl methacrylate	ND	4.0	ug/L
4-Methyl-2-pentanone	1.3 J	20	ug/L
(MIBK)			
Propionitrile	ND	8.0	ug/L
Styrene	ND	2.0	ug/L
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L
Tetrachloroethene	ND	2.0	ug/L
Toluene	ND	2.0	ug/L
1,1,1-Trichloroethane	ND	2.0	ug/L
1,1,2-Trichloroethane	ND	2.0	ug/L
Trichloroethene	ND	2.0	ug/L
Trichlorofluoromethane	ND	2.0	ug/L
1,2,3-Trichloropropane	ND	2.0	ug/L
Vinyl acetate	ND	4.0	ug/L
Vinyl chloride	ND	2.0	ug/L
Xylenes (total)	ND	4.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	92	(75 - 12	1)
1,2-Dichloroethane-d4	81	(63 - 12	9)
Toluene-d8	90	(74 - 11	5)
4-Bromofluorobenzene	103	(66 - 11	7\

J Estimated result. Result is less than RL.

MW-13

GC/MS Volatiles

Lot-Sample #: A0K180499-004 Work Order #: L98J61AH Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	İ
PARAMETER	CAS #	RESULT	TIME	<u>UNITS</u>
1-Propene, 2-methyl-	115-11-7	5.3 NJ	М 1.6939	ug/L
tert-Butyl Alcohol		680	Q 3.173	ug/L
Tetrahydrofuran		22	Q 4.404	ug/L
Ethyl Ether		3.6	Q 2.51	ug/L
MORE (C)				

NOTE(S):

Q: Result was quantitated against the response factor of a calibration standard.

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-13

GC/MS Semivolatiles

Lot-Sample #...: A0K180499-004 Work Order #...: L98J61AJ Matrix.....: WG

Date Sampled...: 11/17/10 09:59 Date Received..: 11/18/10 Prep Date.....: 11/22/10 Analysis Date..: 12/01/10

Prep Batch #...: 0325050

Dilution Factor: 20 Method.....: SW846 8270C

		REPORTING	
PARAMETER	RESULT	LIMIT	<u>UNITS</u>
Phenol	ND	20	ug/L
bis(2-Chloroethyl)-	ND	20	ug/L
ether			
2-Chlorophenol	ND	20	ug/L
1,3-Dichlorobenzene	ND	20	ug/L
1,4-Dichlorobenzene	ND	20	ug/L
1,2-Dichlorobenzene	ND	20	ug/L
2-Methylphenol	ND	20	ug/L
2,2'-oxybis(1-Chloro-	ND	20	ug/L
propane)			
4-Methylphenol	ND	20	ug/L
N-Nitrosodi-n-propyl-	ND	20	ug/L
amine			
Hexachloroethane	ND	20	ug/L
Nitrobenzene	ND	20	ug/L
Isophorone	ND	20	ug/L
2-Nitrophenol	ND	40	ug/L
2,4-Dimethylphenol	ND	40	ug/L
bis(2-Chloroethoxy)	ND	20	ug/L
methane			
2,4-Dichlorophenol	ND	40	ug/L
1,2,4-Trichloro-	ND	20	ug/L
benzene			
Naphthalene	ND	4.0	ug/L
4-Chloroaniline	ND	40	ug/L
Hexachlorobutadiene	ND	20	ug/L
4-Chloro-3-methylphenol	ND	40	ug/L
2-Methylnaphthalene	ND	4.0	ug/L
Hexachlorocyclopenta-	ND	200	ug/L
diene			
2,4,6-Trichloro-	ND	100	ug/L
phenol			
2,4,5-Trichloro-	ND	100	ug/L
phenol			
2-Chloronaphthalene	ND	20	ug/L
2-Nitroaniline	ND	40	ug/L
Dimethyl phthalate	ND	20	ug/L
Acenaphthylene	ND	4.0	ug/L
2,6-Dinitrotoluene	ND	100	ug/L

Client Sample ID: MW-13

GC/MS Semivolatiles

Lot-Sample #...: A0K180499-004 Work Order #...: L98J61AJ Matrix.....: WG

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
3-Nitroaniline	ND	40	ug/L
Acenaphthene	ND	4.0	ug/L
2,4-Dinitrophenol	ND	100	ug/L
4-Nitrophenol	ND	100	ug/L
Dibenzofuran	ND	20	ug/L
2,4-Dinitrotoluene	ND	100	ug/L
Diethyl phthalate	ND	20	ug/L
4-Chlorophenyl phenyl	ND	40	ug/L
ether			
Fluorene	ND	4.0	ug/L
4-Nitroaniline	ND	40	ug/L
4,6-Dinitro-	ND	100	ug/L
2-methylphenol			3.
N-Nitrosodiphenylamine	ND	20	ug/L
4-Bromophenyl phenyl	ND	40	ug/L
ether			J .
Hexachlorobenzene	ND	4.0	ug/L
Pentachlorophenol	ND	100	ug/L
Phenanthrene	ND	4.0	ug/L
Anthracene	ND	4.0	ug/L
Carbazole	ND	20	ug/L
Di-n-butyl phthalate	ND	20	ug/L
Fluoranthene	ND	4.0	ug/L
Pyrene	ND	4.0	ug/L
Butyl benzyl phthalate	ND	20	ug/L
3,3'-Dichlorobenzidine	ND	100	ug/L
Benzo(a)anthracene	ND	4.0	ug/L
Chrysene	ND	4.0	ug/L
bis(2-Ethylhexyl)	ND	40	ug/L
phthalate			_
Di-n-octyl phthalate	ND	20	ug/L
Benzo(b)fluoranthene	ND	4.0	ug/L
Benzo(k)fluoranthene	ND	4.0	ug/L
Benzo(a)pyrene	ND	4.0	ug/L
Indeno(1,2,3-cd)pyrene	ND	4.0	ug/L
Dibenz(a,h)anthracene	ND	4.0	ug/L
Benzo(ghi)perylene	ND	4.0	ug/L
(3 /1 1			3.
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Nitrobenzene-d5	63 DIL	(27 - 111)
2-Fluorobiphenyl	65 DIL	(28 - 110	
Terphenyl-d14	60 DIL	(37 - 119	
Phenol-d5	72 DIL	(10 - 110	
2-Fluorophenol	55 DIL	(10 - 110	
2,4,6-Tribromophenol	83 DIL	(22 - 120	
		,	•

Client Sample ID: MW-13

GC/MS Semivolatiles

Lot-Sample #...: A0K180499-004 Work Order #...: L98J61AJ Matrix.....: WG

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

MW-13

GC/MS Semivolatiles

Lot-Sample #: A0K180499-004 Work Order #: L98J61AJ Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	
PARAMETER	CAS #	RESULT	TIME	UNITS
Unknown		95 J	М 3.6977	ug/L
Unknown		80 J	м 3.8796	ug/L
Unknown		260 J	M 4.0882	ug/L
Unknown		120 J	M 4.4412	ug/L
Unknown		210 Ј	M 4.5	ug/L
Unknown		99 J	M 4.5321	ug/L
Unknown		120 J	M 4.623	ug/L
Unknown		1100 J	M 5.3932	ug/L
Unknown		230 J	M 5.4628	ug/L
Unknown		590 J	M 5.6553	ug/L
Unknown		83 J	M 5.7623	ug/L
Unknown		260 J	M 5.7783	ug/L
Unknown		560 J	M 6.1688	ug/L
Unknown		91 J	M 6.2169	ug/L
Unknown		220 J	M 6.4897	ug/L
Unknown		300 J	M 6.6502	ug/L
Unknown		300 J	M 6.7946	ug/L
Unknown		160 J	M 6.9122	ug/L
Unknown		140 J	M 7.3401	ug/L
Unknown		2800 J	M 7.6236	ug/L
Unknown		80 J	M 8.1745	ug/L
Unknown		470 J	M 8.3403	ug/L
Unknown		110 J	M 8.5275	ug/L
Unknown		170 J	M 8.6078	ug/L
Unknown		2700 J	M 9.1105	ug/L

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-13

TOTAL Metals

Lot-Sample #...: A0K180499-004 Matrix.....: WG

Date Sampled...: 11/17/10 09:59 Date Received..: 11/18/10

PARAMETER	RESULT	REPORTING LIMIT		METHO:	D	PREPARATION- ANALYSIS DATE	WORK ORDER #
						111111111111111111111111111111111111111	<u> </u>
Prep Batch #	.: 0323019						
Arsenic	23.2	10.0	ug/L	SW846	6010В	11/19-11/23/10	L98J61AK
		Dilution Fact	or: 1				
T 3	2.6	2.0	/ T	OTTO A C	C010D	11 /10 11 /02 /10	T 0.0 T.C.1 3.T
Lead	3.6	3.0 Dilution Fact	_	SW846	6010B	11/19-11/23/10	TA8061AT
		DITUCION FACE	01. 1				
Selenium	ND	5.0	ug/L	SW846	6010B	11/19-11/23/10	L98J61AM
		Dilution Fact	or: 1				
Thallium	4.9 B,J	10.0		SW846	6010B	11/19-11/23/10	L98J61AN
		Dilution Fact	or: 1				
Antimony	ND	60.0	ug/L	CM846	6010B	11/19-11/23/10	T.98.T617D
Aircimony	ND	Dilution Fact	_	DWOTO	0010B	11/17 11/23/10	1000 OTAF
		Directon rece	011				
Beryllium	ND	5.0	ug/L	SW846	6010B	11/19-11/23/10	L98J61AQ
		Dilution Fact	or: 1				
Cadmium	ND	5.0	_	SW846	6010B	11/19-11/23/10	L98J61AR
		Dilution Fact	or: I				
Chromium	ND	10.0	11 0 / T ₁	SW846	6010B	11/19-11/23/10	T.98.T61AT
0111 01111 01111		Dilution Fact	_	2.10 20	00102	11, 12, 11, 10, 10	
Copper	ND	25.0	_	SW846	6010B	11/19-11/23/10	L98J61AU
		Dilution Fact	or: 1				
Nickel	12.0 B	40.0	/T	CMO A C	6010B	11/19-11/23/10	T 00 T6 1 757
NICKEI	12.0 B	Dilution Fact	-	5W040	00100	11/19-11/23/10	LJOUUIAV
		DITUCION FACE	01. 1				
Silver	ND	10.0	ug/L	SW846	6010B	11/19-11/23/10	L98J61AW
		Dilution Fact	or: 1				
Zinc	9.1 B	20.0	ug/L	SW846	6010B	11/19-11/23/10	L98J61AX
		Dilution Fact	or: 1				
Mercury	ND	0.20	ug/L	SW846	7470A	11/19-11/22/10	T.98.T61AF
1.01.041	-12	Dilution Fact		2.10 10	. 1, 011	,,,,,	

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-13

DISSOLVED Metals

Lot-Sample #...: A0K180499-004 Matrix.....: WG

Date Sampled...: 11/17/10 09:59 Date Received..: 11/18/10

PARAMETER	RESULT	REPORTING		<u>METHOD</u>	PREPARATION- WORK ANALYSIS DATE ORDER #	⊭
Prep Batch #	.: 0323019 23.4	10.0	_	SW846 6010	В 11/19-11/23/10 L98J61	A 0
Lead	ND	Dilution Fact 3.0 Dilution Fact	ug/L	SW846 6010	B 11/19-11/23/10 L98J61A	41
Selenium	ND	5.0 Dilution Fact	_	SW846 6010	В 11/19-11/23/10 L98J61	42
Thallium	ND	10.0 Dilution Fact	_	SW846 6010	B 11/19-11/23/10 L98J61A	43
Antimony	ND	60.0 Dilution Fact	_	SW846 6010	B 11/19-11/23/10 L98J61A	14
Beryllium	ND	5.0 Dilution Fact	_	SW846 6010	B 11/19-11/23/10 L98J61A	1 5
Cadmium	ND	5.0 Dilution Fact	_	SW846 6010	B 11/19-11/23/10 L98J61A	4 6
Chromium	ND	10.0 Dilution Fact	_	SW846 6010	B 11/19-11/23/10 L98J61A	1 7
Copper	ND	25.0 Dilution Fact	_	SW846 6010	B 11/19-11/23/10 L98J61A	A.
Nickel	11.2 В	40.0 Dilution Fact	_	SW846 6010	В 11/19-11/23/10 L98J61д	AC
Silver	ND	10.0 Dilution Fact	2	SW846 6010	B 11/19-11/23/10 L98J61A	4D
Zinc	ND	20.0 Dilution Fact	ug/L or: 1	SW846 6010	B 11/19-11/23/10 L98J61A	Æ
Mercury	ND	0.20 Dilution Fact	ug/L or: 1	SW846 7470	A 11/19-11/22/10 L98J61A	∤ G
NOTE(S):						

B Estimated result. Result is less than RL.

Client Sample ID: MW-13 DUPLICATE

GC/MS Volatiles

Lot-Sample #...: A0K180499-005 Work Order #...: L98J71AH Matrix.....: WG

Date Sampled...: 11/17/10 09:59 Date Received..: 11/18/10 Prep Date....: 11/30/10 Analysis Date..: 11/30/10

Prep Batch #...: 0335126

Dilution Factor: 2 Method.....: SW846 8260B

		REPORTING	!
PARAMETER	RESULT	LIMIT	UNITS
Acetone	20	20	ug/L
Acetonitrile	ND	40	ug/L
Acrolein	ND	40	ug/L
Acrylonitrile	ND	40	ug/L
Allyl chloride	ND	4.0	ug/L
Benzene	ND	2.0	ug/L
Bromodichloromethane	ND	2.0	ug/L
Bromoform	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
2-Butanone (MEK)	ND	20	ug/L
Carbon disulfide	ND	2.0	ug/L
Carbon tetrachloride	ND	2.0	ug/L
Chlorobenzene	ND	2.0	ug/L
Chloroethane	ND	2.0	ug/L
Chloroform	ND	2.0	ug/L
Chloromethane	ND	2.0	ug/L
Chloroprene	ND	4.0	ug/L
Dibromochloromethane	ND	2.0	ug/L
1,2-Dibromo-3-chloro-	ND	4.0	ug/L
propane			
1,2-Dibromoethane (EDB)	ND	2.0	ug/L
Dibromomethane	ND	2.0	ug/L
trans-1,4-Dichloro-	ND	2.0	ug/L
2-butene			
Dichlorodifluoromethane	ND	2.0	ug/L
1,1-Dichloroethane	ND	2.0	ug/L
1,2-Dichloroethane	ND	2.0	ug/L
1,1-Dichloroethene	ND	2.0	ug/L
trans-1,2-Dichloroethene	ND	2.0	ug/L
1,2-Dichloropropane	ND	2.0	ug/L
cis-1,3-Dichloropropene	ND	2.0	ug/L
trans-1,3-Dichloropropene	ND	2.0	ug/L
1,4-Dioxane	ND	400	ug/L
Ethylbenzene	ND	2.0	ug/L
Ethyl methacrylate	ND	2.0	ug/L
2-Hexanone	ND	20	ug/L
Iodomethane	ND	2.0	ug/L
Isobutyl alcohol	ND	100	ug/L
Methacrylonitrile	ND	4.0	ug/L

Client Sample ID: MW-13 DUPLICATE

GC/MS Volatiles

Lot-Sample #...: A0K180499-005 Work Order #...: L98J71AH Matrix.....: WG

		REPORTIN	G
PARAMETER	RESULT	LIMIT	<u>UNITS</u>
Methylene chloride	ND	2.0	ug/L
Methyl methacrylate	ND	4.0	ug/L
4-Methyl-2-pentanone	1.4 J	20	ug/L
(MIBK)			
Propionitrile	ND	8.0	ug/L
Styrene	ND	2.0	ug/L
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L
Tetrachloroethene	ND	2.0	ug/L
Toluene	ND	2.0	ug/L
1,1,1-Trichloroethane	ND	2.0	ug/L
1,1,2-Trichloroethane	ND	2.0	ug/L
Trichloroethene	ND	2.0	ug/L
Trichlorofluoromethane	ND	2.0	ug/L
1,2,3-Trichloropropane	ND	2.0	ug/L
Vinyl acetate	ND	4.0	ug/L
Vinyl chloride	ND	2.0	ug/L
Xylenes (total)	ND	4.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	93	(75 - 12	1)
1,2-Dichloroethane-d4	83	(63 - 12	9)
Toluene-d8	88	(74 - 11	5)
4-Bromofluorobenzene	106	(66 - 11	7)

J Estimated result. Result is less than RL.

MW-13 DUPLICATE

GC/MS Volatiles

Lot-Sample #: A0K180499-005 Work Order #: L98J71AH Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	[
PARAMETER	CAS #	RESULT	TIME	<u>UNITS</u>
1-Propene, 2-methyl-	115-11-7	5.6 NJ	М 1.685	ug/L
tert-Butyl Alcohol		390	Q 3.164	ug/L
tetrahydrofuran		22	Q 4.407	ug/L
Ethyl Ether		3.9	Q 2.513	ug/L
NOTE(S):				

Q: Result was quantitated against the response factor of a calibration standard.

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-13 DUPLICATE

GC/MS Semivolatiles

Lot-Sample #...: A0K180499-005 Work Order #...: L98J71AJ Matrix.....: WG

Date Sampled...: 11/17/10 09:59 Date Received..: 11/18/10 Prep Date....: 11/22/10 Analysis Date..: 12/01/10

Prep Batch #...: 0325050

Dilution Factor: 20 Method.....: SW846 8270C

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Phenol	ND	20	ug/L
bis(2-Chloroethyl)-	ND	20	ug/L
ether			J .
2-Chlorophenol	ND	20	ug/L
1,3-Dichlorobenzene	ND	20	ug/L
1,4-Dichlorobenzene	ND	20	ug/L
1,2-Dichlorobenzene	ND	20	ug/L
2-Methylphenol	ND	20	ug/L
2,2'-oxybis(1-Chloro- propane)	ND	20	ug/L
4-Methylphenol	ND	20	ug/L
N-Nitrosodi-n-propyl-	ND	20	ug/L
amine	1.2		~5 <i>,</i> =
Hexachloroethane	ND	20	ug/L
Nitrobenzene	ND	20	ug/L
Isophorone	ND	20	ug/L
2-Nitrophenol	ND	40	ug/L
2,4-Dimethylphenol	ND	40	ug/L
bis(2-Chloroethoxy)	ND	20	ug/L
methane			_
2,4-Dichlorophenol	ND	40	ug/L
1,2,4-Trichloro-	ND	20	ug/L
benzene			
Naphthalene	ND	4.0	ug/L
4-Chloroaniline	ND	40	ug/L
Hexachlorobutadiene	ND	20	ug/L
4-Chloro-3-methylphenol	ND	40	ug/L
2-Methylnaphthalene	ND	4.0	ug/L
Hexachlorocyclopenta-	ND	200	ug/L
diene			
2,4,6-Trichloro-	ND	100	ug/L
phenol			
2,4,5-Trichloro-	ND	100	ug/L
phenol			
2-Chloronaphthalene	ND	20	ug/L
2-Nitroaniline	ND	40	ug/L
Dimethyl phthalate	ND	20	ug/L
Acenaphthylene	ND	4.0	ug/L
2,6-Dinitrotoluene	ND	100	ug/L

Client Sample ID: MW-13 DUPLICATE

GC/MS Semivolatiles

Lot-Sample #:	A0K180499-005	Work Order #	: T.98.T71 A.T	Matrix	: WG
TOU DAMPTE #	AUKIUUIJ UUJ	MOTV OTGET #	D D D D D D D D D D D D D D D D D	Matila	• WG

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
3-Nitroaniline	ND	40	ug/L
Acenaphthene	ND	4.0	ug/L
2,4-Dinitrophenol	ND	100	ug/L
4-Nitrophenol	ND	100	ug/L
Dibenzofuran	ND	20	ug/L
2,4-Dinitrotoluene	ND	100	ug/L
Diethyl phthalate	ND	20	ug/L
4-Chlorophenyl phenyl	ND	40	ug/L
ether			
Fluorene	ND	4.0	ug/L
4-Nitroaniline	ND	40	ug/L
4,6-Dinitro-	ND	100	ug/L
2-methylphenol			
N-Nitrosodiphenylamine	ND	20	ug/L
4-Bromophenyl phenyl	ND	40	ug/L
ether			
Hexachlorobenzene	ND	4.0	ug/L
Pentachlorophenol	ND	100	ug/L
Phenanthrene	ND	4.0	ug/L
Anthracene	ND	4.0	ug/L
Carbazole	ND	20	ug/L
Di-n-butyl phthalate	ND	20	ug/L
Fluoranthene	ND	4.0	ug/L
Pyrene	ND	4.0	ug/L
Butyl benzyl phthalate	ND	20	ug/L
3,3'-Dichlorobenzidine	ND	100	ug/L
Benzo(a)anthracene	ND	4.0	ug/L
Chrysene	ND	4.0	ug/L
bis(2-Ethylhexyl)	ND	40	ug/L
phthalate			
Di-n-octyl phthalate	ND	20	ug/L
Benzo(b)fluoranthene	ND	4.0	ug/L
Benzo(k)fluoranthene	ND	4.0	ug/L
Benzo(a)pyrene	ND	4.0	ug/L
Indeno(1,2,3-cd)pyrene	ND	4.0	ug/L
Dibenz(a,h)anthracene	ND	4.0	ug/L
Benzo(ghi)perylene	ND	4.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	69 DIL	(27 - 111)	
2-Fluorobiphenyl	71 DIL	(28 - 110)	
Terphenyl-d14	63 DIL	(37 - 119)	
Phenol-d5	66 DIL	(10 - 110)	
2-Fluorophenol	38 DIL	(10 - 110)	
2,4,6-Tribromophenol	84 DIL	(22 - 120)	

Client Sample ID: MW-13 DUPLICATE

GC/MS Semivolatiles

Lot-Sample #...: A0K180499-005 Work Order #...: L98J71AJ Matrix.....: WG

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

MW-13 DUPLICATE

GC/MS Semivolatiles

Lot-Sample #: A0K180499-005 Work Order #: L98J71AJ Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED		RETENTION	
PARAMETER	CAS #	RESULT		TIME	UNITS
Unknown		280 J	M	4.0882	ug/L
Unknown		78 J	M	4.4412	ug/L
Unknown		150 J	M	4.4947	ug/L
Unknown		71 J	M	4.5375	ug/L
Unknown		120 J	M	4.6231	ug/L
Unknown		970 J	M	5.3933	ug/L
Unknown		250 J	M	5.4628	ug/L
Unknown		620 J	M	5.6554	ug/L
Unknown		180 J	M	5.7837	ug/L
Unknown		710 J	M	6.1742	ug/L
Unknown		150 J	M	6.217	ug/L
Unknown		290 J	M	6.4898	ug/L
Unknown		360 J	M	6.6502	ug/L
Unknown		320 J	M	6.8	ug/L
Unknown		120 J	M	6.9123	ug/L
Unknown		210 J	M	7.3455	ug/L
Unknown		2500 J	M	7.6344	ug/L
Unknown		120 J	M	8.1799	ug/L
Unknown		560 J	M	8.3404	ug/L
Unknown		120 J	M	8.5276	ug/L
Unknown		130 J	M	8.6078	ug/L
Unknown		140 J	M	8.9234	ug/L
Unknown		2200 J	M	9.1159	ug/L
Unknown		77 J	M	9.1801	ug/L
Unknown		110 J	M	9.3299	ug/L

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-13 DUPLICATE

TOTAL Metals

Lot-Sample #...: A0K180499-005 **Matrix.....:** WG

Date Sampled...: 11/17/10 09:59 Date Received..: 11/18/10

PARAMETER	RESULT	REPORTING		METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch # Arsenic	: 0323019 21.2	10.0 Dilution Fact	_	SW846 6010B	11/19-11/23/10 L98J71AK
Lead	3.2	3.0 Dilution Fact	_	SW846 6010B	11/19-11/23/10 L98J71AL
Selenium	ND	5.0 Dilution Fact		SW846 6010B	11/19-11/23/10 L98J71AM
Thallium	ND	10.0 Dilution Fact	_	SW846 6010B	11/19-11/23/10 L98J71AN
Antimony	ND	60.0 Dilution Fact	_	SW846 6010B	11/19-11/23/10 L98J71AP
Beryllium	ND	5.0 Dilution Fact	_	SW846 6010B	11/19-11/23/10 L98J71AQ
Cadmium	ND	5.0 Dilution Fact	_	SW846 6010B	11/19-11/23/10 L98J71AR
Chromium	ND	10.0 Dilution Fact	_	SW846 6010B	11/19-11/23/10 L98J71AT
Copper	ND	25.0 Dilution Fact	_	SW846 6010B	11/19-11/23/10 L98J71AU
Nickel	10.7 в	40.0 Dilution Fact	_	SW846 6010B	11/19-11/23/10 L98J71AV
Silver	ND	10.0 Dilution Fact	_	SW846 6010B	11/19-11/23/10 L98J71AW
Zinc	35.4	20.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10 L98J71AX
Mercury	ND	0.20 Dilution Fact	ug/L or: 1	SW846 7470A	11/19-11/22/10 L98J71AF
NOTE(S):					

B Estimated result. Result is less than RL.

Client Sample ID: MW-13 DUPLICATE

DISSOLVED Metals

Lot-Sample #...: A0K180499-005 **Matrix.....:** WG

Date Sampled...: 11/17/10 09:59 Date Received..: 11/18/10

PARAMETER	RESULT	REPORTING LIMIT		METHO:	D	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Arsenic	: 0323019 23.6	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98J71A0
Lead	ND	3.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98J71A1
Selenium	ND	5.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98J71A2
Thallium	ND	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98J71A3
Antimony	ND	60.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98J71A4
Beryllium	ND	5.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98J71A5
Cadmium	ND	5.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98J71A6
Chromium	ND	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98J71A7
Copper	ND	25.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98J71AA
Nickel	11.3 В	40.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98J71AC
Silver	ND	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98J71AD
Zinc	ND	20.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98J71AE
Mercury	ND	0.20 Dilution Fact	ug/L or: 1	SW846	7470A	11/19-11/22/10	L98J71AG
NOTE(S):							

B Estimated result. Result is less than RL.

Client Sample ID: MW-9

GC/MS Volatiles

Lot-Sample #...: A0K180499-006 Work Order #...: L98J91AH Matrix.....: WG

Date Sampled...: 11/17/10 11:50 Date Received..: 11/18/10 Prep Date.....: 11/30/10 Analysis Date..: 11/30/10

Prep Batch #...: 0335126

Dilution Factor: 1 Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acetone	28	10	ug/L
Acetonitrile	ND	20	ug/L
Acrolein	ND	20	ug/L
Acrylonitrile	ND	20	ug/L
Allyl chloride	ND	2.0	ug/L
Benzene	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	ug/L
2-Butanone (MEK)	2.8 J	10	ug/L
Carbon disulfide	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Chloroethane	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
Chloroprene	ND	2.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,2-Dibromo-3-chloro-	ND	2.0	ug/L
propane			
1,2-Dibromoethane (EDB)	ND	1.0	ug/L
Dibromomethane	ND	1.0	ug/L
trans-1,4-Dichloro-	ND	1.0	ug/L
2-butene			
Dichlorodifluoromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
1,4-Dioxane	ND	200	ug/L
Ethylbenzene	ND	1.0	ug/L
Ethyl methacrylate	ND	1.0	ug/L
2-Hexanone	ND	10	ug/L
Iodomethane	ND	1.0	ug/L
Isobutyl alcohol	ND	50	ug/L
Methacrylonitrile	ND	2.0	ug/L

Client Sample ID: MW-9

GC/MS Volatiles

Lot-Sample #...: A0K180499-006 Work Order #...: L98J91AH Matrix.....: WG

		REPORTING	
PARAMETER	RESULT	LIMIT	<u>UNITS</u>
Methylene chloride	ND	1.0	ug/L
Methyl methacrylate	ND	2.0	ug/L
4-Methyl-2-pentanone	2.2 J	10	ug/L
(MIBK)			
Propionitrile	ND	4.0	ug/L
Styrene	ND	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
Vinyl acetate	ND	2.0	ug/L
Vinyl chloride	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Dibromofluoromethane	91	(75 - 121))
1,2-Dichloroethane-d4	82	(63 - 129))
Toluene-d8	90	(74 - 115))
4-Bromofluorobenzene	105	(66 - 117))

J Estimated result. Result is less than RL.

MW-9

GC/MS Volatiles

Lot-Sample #: A0K180499-006 Work Order #: L98J91AH Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED		RETENTION	
PARAMETER	CAS #	RESULT		TIME	UNITS
1-Propene, 2-methyl-	115-11-7	2.4 NJ	M	1.6934	ug/L
Unknown		1.4 NJ	M	2.4271	ug/L
tert-Butyl Alcohol		4200	M	3.173	ug/L
Ethyl Ether		2.2	Q	2.51	ug/L
MOTE / C \ •					

Q: Result was quantitated against the response factor of a calibration standard.

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-9

GC/MS Semivolatiles

Lot-Sample #...: A0K180499-006 Work Order #...: L98J91AJ Matrix.....: WG

Date Sampled...: 11/17/10 11:50 Date Received..: 11/18/10 Prep Date.....: 11/22/10 Analysis Date..: 12/01/10

Prep Batch #...: 0325050

Dilution Factor: 20 Method.....: SW846 8270C

		REPORTING	
PARAMETER	RESULT	LIMIT	<u>UNITS</u>
Phenol	ND	20	ug/L
bis(2-Chloroethyl)-	ND	20	ug/L
ether			
2-Chlorophenol	ND	20	ug/L
1,3-Dichlorobenzene	ND	20	ug/L
1,4-Dichlorobenzene	ND	20	ug/L
1,2-Dichlorobenzene	ND	20	ug/L
2-Methylphenol	ND	20	ug/L
2,2'-oxybis(1-Chloro-	ND	20	ug/L
propane)			
4-Methylphenol	ND	20	ug/L
N-Nitrosodi-n-propyl-	ND	20	ug/L
amine			
Hexachloroethane	ND	20	ug/L
Nitrobenzene	ND	20	ug/L
Isophorone	ND	20	ug/L
2-Nitrophenol	ND	40	ug/L
2,4-Dimethylphenol	ND	40	ug/L
bis(2-Chloroethoxy)	ND	20	ug/L
methane			
2,4-Dichlorophenol	ND	40	ug/L
1,2,4-Trichloro-	ND	20	ug/L
benzene			
Naphthalene	ND	4.0	ug/L
4-Chloroaniline	ND	40	ug/L
Hexachlorobutadiene	ND	20	ug/L
4-Chloro-3-methylphenol	ND	40	ug/L
2-Methylnaphthalene	ND	4.0	ug/L
Hexachlorocyclopenta-	ND	200	ug/L
diene			
2,4,6-Trichloro-	ND	100	ug/L
phenol			
2,4,5-Trichloro-	ND	100	ug/L
phenol			
2-Chloronaphthalene	ND	20	ug/L
2-Nitroaniline	ND	40	ug/L
Dimethyl phthalate	ND	20	ug/L
Acenaphthylene	ND	4.0	ug/L
2,6-Dinitrotoluene	ND	100	ug/L

Client Sample ID: MW-9

GC/MS Semivolatiles

Lot-Sample #: A0K180499-006 Work Order #: L98J91AJ Matrix:	Lot-Sample #	A0K180499-006	Work Order :	± : T.98.⊤91∆.⊤	Matrix:	WG
--	--------------	---------------	--------------	------------------------	---------	----

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS		
3-Nitroaniline	ND	40	ug/L		
Acenaphthene	ND	4.0	ug/L		
2,4-Dinitrophenol	ND	100	ug/L		
4-Nitrophenol	ND	100	ug/L		
Dibenzofuran	ND	20	ug/L		
2,4-Dinitrotoluene	ND	100	ug/L		
Diethyl phthalate	ND	20	ug/L		
4-Chlorophenyl phenyl	ND	40	ug/L		
ether	ND	40	ug/ ii		
Fluorene	ND	4.0	ug/L		
4-Nitroaniline	ND	40	ug/L		
4,6-Dinitro-	ND	100			
	ND	100	ug/L		
2-methylphenol	MD	20	110 /T		
N-Nitrosodiphenylamine	ND	20	ug/L		
4-Bromophenyl phenyl ether	ND	40	ug/L		
etner Hexachlorobenzene	MD	4 0	110 /T		
	ND	4.0	ug/L		
Pentachlorophenol	ND	100	ug/L		
Phenanthrene	ND	4.0	ug/L		
Anthracene	ND	4.0	ug/L		
Carbazole	ND	20	ug/L		
Di-n-butyl phthalate	ND	20	ug/L		
Fluoranthene	6.2	4.0	ug/L		
Pyrene	ND	4.0	ug/L		
Butyl benzyl phthalate	ND	20	ug/L		
3,3'-Dichlorobenzidine	ND	100	ug/L		
Benzo(a)anthracene	ND	4.0	ug/L		
Chrysene	ND	4.0	ug/L		
bis(2-Ethylhexyl)	ND	40	ug/L		
phthalate					
Di-n-octyl phthalate	ND	20	ug/L		
Benzo(b)fluoranthene	ND	4.0	ug/L		
Benzo(k)fluoranthene	ND	4.0	ug/L		
Benzo(a)pyrene	ND	4.0	ug/L		
Indeno(1,2,3-cd)pyrene	ND	4.0	ug/L		
Dibenz(a,h)anthracene	ND	4.0	ug/L		
Benzo(ghi)perylene	ND	4.0	ug/L		
-			-		
	PERCENT	RECOVERY	7.		
SURROGATE	RECOVERY	LIMITS			
Nitrobenzene-d5	64 DIL	(27 - 11	.1)		
2-Fluorobiphenyl	61 DIL	(28 - 11			
Terphenyl-d14	46 DIL	(37 - 11			
Phenol-d5	62 DIL	(10 - 11			
2-Fluorophenol	35 DIL	(10 - 11	·		
2,4,6-Tribromophenol	83 DIL	(22 - 12			
-, -, 0 11 101 0 mopricion	00 011	(22 12	,		

Client Sample ID: MW-9

GC/MS Semivolatiles

Lot-Sample #...: A0K180499-006 **Work Order** #...: L98J91AJ **Matrix.....**: WG

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

MW-9

GC/MS Semivolatiles

Lot-Sample #: A0K180499-006 Work Order #: L98J91AJ Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTIO	N
PARAMETER	CAS #	RESULT	TIME	UNITS
Unknown		110 J	м 2.6975	ug/L
Unknown		1700 J	M 3.7405	ug/L
Unknown		270 J	М 3.7512	ug/L
Unknown		160 J	м 3.7833	ug/L
Unknown		170 J	M 4.0507	ug/L
Unknown		1700 J	м 4.0988	ug/L
Unknown		450 J	M 4.4839	ug/L
Unknown		96 J	M 4.5374	ug/L
Unknown		95 J	M 4.9439	ug/L
Unknown		58 J	М 5.1793	ug/L
Unknown		1100 J	M 5.3504	ug/L
Unknown		600 J	M 5.3825	ug/L
Unknown		140 J	м 5.436	ug/L
Unknown		75 J	М 5.5965	ug/L
Unknown		75 J	M 5.6606	ug/L
Unknown		320 J	M 5.7141	ug/L
Unknown		230 J	М 5.8906	ug/L
Unknown		55 J	M 6.0618	ug/L
Unknown		150 J	м 6.0778	ug/L
Unknown		190 J	М 6.0992	ug/L
Unknown		76 J	M 7.2064	ug/L
Unknown		120 J	M 7.5701	ug/L
Unknown		170 J	M 8.5489	ug/L
Unknown		58 J	M 8.7789	ug/L
Unknown		67 J	M 8.9126	ug/L
NOTE(S):				

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-9

TOTAL Metals

Lot-Sample #...: A0K180499-006 Matrix....: WG

Date Sampled...: 11/17/10 11:50 Date Received..: 11/18/10

PARAMETER	RESULT	REPORTIN	G <u>UNITS</u>	METHOD	PREPARATION- V	WORK ORDER #
Prep Batch # Arsenic	33.4	10.0 Dilution Fact	_	SW846 6010B	11/19-11/24/10	L98J91AK
Lead	2.8 в	3.0 Dilution Fact	ug/L tor: 1	SW846 6010B	11/19-11/23/10	L98J91AL
Selenium	ND	5.0 Dilution Fact	ug/L tor: 1	SW846 6010B	11/19-11/23/10 1	L98J91AM
Thallium	7.9 В,Ј	10.0 Dilution Fact	ug/L tor: 1	SW846 6010B	11/19-11/23/10	L98J91AN
Antimony	2.9 в	60.0 Dilution Fact	ug/L tor: 1	SW846 6010B	11/19-11/23/10	L98J91AP
Beryllium	ND	5.0 Dilution Fact	ug/L tor: 1	SW846 6010B	11/19-11/23/10 1	L98J91AQ
Cadmium	ND	5.0 Dilution Fact	ug/L tor: 1	SW846 6010B	11/19-11/23/10 1	L98J91AR
Chromium	4.4 B	10.0 Dilution Fact	ug/L tor: 1	SW846 6010B	11/19-11/23/10	L98J91AT
Copper	6.4 B	25.0 Dilution Fact	ug/L tor: 1	SW846 6010B	11/19-11/23/10	L98J91AU
Nickel	14.3 В	40.0 Dilution Fact	ug/L tor: 1	SW846 6010B	11/19-11/23/10	L98J91AV
Silver	ND	10.0 Dilution Fact	ug/L tor: 1	SW846 6010B	11/19-11/23/10 1	L98J91AW
Zinc	27.0	20.0 Dilution Fact	ug/L tor: 1	SW846 6010B	11/19-11/23/10	L98J91AX
Mercury	ND	0.20 Dilution Fact	ug/L tor: 1	SW846 7470A	11/19-11/22/10 1	L98J91AF

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-9

DISSOLVED Metals

Lot-Sample #...: A0K180499-006 Matrix.....: WG

Date Sampled...: 11/17/10 11:50 Date Received..: 11/18/10

PARAMETER	RESULT	REPORTING	G UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Arsenic	31.1	10.0 Dilution Fact	_	SW846 6010B	11/19-11/24/10	L98J91A0
Lead	ND	3.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J91A1
Selenium	ND	5.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J91A2
Thallium	6.6 B,J	10.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J91A3
Antimony	ND	60.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J91A4
Beryllium	ND	5.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J91A5
Cadmium	ND	5.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J91A6
Chromium	ND	10.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J91A7
Copper	ND	25.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J91AA
Nickel	8.3 B	40.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J91AC
Silver	ND	10.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J91AD
Zinc	12.5 В	20.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98J91AE
Mercury	ND	0.20 Dilution Fact	ug/L or: 1	SW846 7470A	11/19-11/22/10	L98J91AG

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-11

GC/MS Volatiles

Lot-Sample #...: A0K180499-007 Work Order #...: L98KA1AH Matrix.....: WG

Date Sampled...: 11/17/10 13:20 Date Received..: 11/18/10 Prep Date....: 11/30/10 Analysis Date..: 11/30/10

Prep Batch #...: 0335126

Dilution Factor: 2 Method.....: SW846 8260B

PARAMETER			REPORTING	3
Acetonitrile Acrolein Acrylonitrile Allyl chloride Allyl chloride Ann Acrylonitrile Ann Acrylonitrile Allyl chloride Ann Allo ug/L Alloride Ann Allo ug/L Alloride Ann Alloride An	PARAMETER	RESULT	LIMIT	UNITS
Acrolein Acrylonitrile Acrylonitrile Acrylonitrile Anllyl chloride ND Acrylonitrile ND Acry	Acetone	11 J	20	ug/L
Acrylonitrile Allyl chloride ND Allyl chloromethane ND Ally	Acetonitrile	ND	40	ug/L
Allyl chloride ND 4.0 ug/L Benzene ND 2.0 ug/L Bromodichloromethane ND 2.0 ug/L Bromoform ND 2.0 ug/L Bromomethane ND 2.0 ug/L Bromomethane ND 2.0 ug/L Bromomethane ND 2.0 ug/L Bromomethane ND 2.0 ug/L Carbon disulfide ND 2.0 ug/L Carbon tetrachloride ND 2.0 ug/L Chlorobenzene ND 2.0 ug/L Chlorothane ND 2.0 ug/L Chlorothane ND 2.0 ug/L Chloromethane ND 2.0 ug/L Chloromomethane ND 2.0 ug/L Dibromochloromethane ND 2.0 ug/L Dibromochloromethane ND 2.0 ug/L 1,2-Dibromo-3-chloro- ND 4.0 ug/L Dibromomethane (EDB) ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L 1,1-Dichlorothane ND 2.0 ug/L 1,1-Dichlorothane ND 2.0 ug/L 1,1-Dichlorothane ND 2.0 ug/L 1,2-Dichlorothane ND 2.0 ug/L 1,2-Dichlorothone ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,4-Dioxane ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L Isobutyl alcohol ND 100 ug/L	Acrolein	ND	40	ug/L
Benzene ND 2.0	Acrylonitrile	ND	40	ug/L
Bromodichloromethane ND 2.0	Allyl chloride	ND	4.0	ug/L
Bromoform ND 2.0 ug/L Bromomethane ND 2.0 ug/L 2-Butanone (MEK) ND 20 ug/L Carbon disulfide ND 2.0 ug/L Carbon tetrachloride ND 2.0 ug/L Chlorobenzene ND 2.0 ug/L Chlorobenzene ND 2.0 ug/L Chloroform ND 2.0 ug/L Chloromethane ND 2.0 ug/L Chloromethane ND 2.0 ug/L Chloroprene ND 4.0 ug/L Chloromethane ND 2.0 ug/L Chloromethane ND 2.0 ug/L 1,2-Dibromo-3-chloro- propane ND 2.0 ug/L 1,2-Dibromoethane (EDB) ND 2.0 ug/L trans-1,4-Dichloro- 2-butene ND 2.0 ug/L Dichlorodifluoromethane ND 2.0 ug/L 1,1-Dichloroethane ND <td>Benzene</td> <td>ND</td> <td>2.0</td> <td>ug/L</td>	Benzene	ND	2.0	ug/L
Bromomethane	Bromodichloromethane	ND	2.0	ug/L
2-Butanone (MEK)	Bromoform	ND	2.0	ug/L
Carbon disulfide ND 2.0 ug/L Carbon tetrachloride ND 2.0 ug/L Chlorobenzene ND 2.0 ug/L Chlorocethane ND 2.0 ug/L Chloroform ND 2.0 ug/L Chloromethane ND 2.0 ug/L Chloroprene ND 4.0 ug/L Dibromochloromethane ND 2.0 ug/L 1,2-Dibromo-3-chloro- ND 4.0 ug/L propane 1,2-Dibromoethane (EDB) ND 2.0 ug/L 1,2-Dibromoethane (EDB) ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L 1,1-Dichloro- ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L cis-1,3-Dichloropropene ND 2.0 ug/L trans	Bromomethane	ND	2.0	ug/L
Carbon tetrachloride ND 2.0 ug/L Chlorobenzene ND 2.0 ug/L Chloroethane ND 2.0 ug/L Chloroform ND 2.0 ug/L Chloromethane ND 2.0 ug/L Chloroprene ND 4.0 ug/L Dibromochloromethane ND 2.0 ug/L 1,2-Dibromo-3-chloro- ND 4.0 ug/L propane 1,2-Dibromoethane (EDB) ND 2.0 ug/L 1,2-Dibromoethane (EDB) ND 2.0 ug/L bibromoethane (EDB) ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L trans-1,2-Dichloropropene ND 2.0 ug/L	2-Butanone (MEK)	ND	20	ug/L
Chlorobenzene ND 2.0 ug/L Chloroform ND 2.0 ug/L Chloroform ND 2.0 ug/L Chloromethane ND 2.0 ug/L Chloroprene ND 4.0 ug/L Dibromochloromethane ND 2.0 ug/L 1,2-Dibromo-3-chloro- ND 4.0 ug/L 1,2-Dibromoethane ND 2.0 ug/L 1,2-Dibromoethane (EDB) ND 2.0 ug/L Dibromomethane (EDB) ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L 2-butene ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene <	Carbon disulfide	ND	2.0	ug/L
Chloroethane ND 2.0 ug/L Chloroform ND 2.0 ug/L Chloromethane ND 2.0 ug/L Chloroprene ND 4.0 ug/L Dibromochloromethane ND 2.0 ug/L 1,2-Dibromo-3-chloro- ND 4.0 ug/L propane 1,2-Dibromoethane (EDB) ND 2.0 ug/L 1,2-Dibromoethane (EDB) ND 2.0 ug/L Dibromomethane (EDB) ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L cis-1,3-Dichloropropene ND 2.0 ug/L trans-1,2-Dichloropropene ND 2.0 ug/L <tr< td=""><td>Carbon tetrachloride</td><td>ND</td><td>2.0</td><td>ug/L</td></tr<>	Carbon tetrachloride	ND	2.0	ug/L
Chloroform ND 2.0 ug/L Chloromethane ND 2.0 ug/L Chloroprene ND 4.0 ug/L Dibromochloromethane ND 2.0 ug/L 1,2-Dibromo-3-chloro- ND 4.0 ug/L propane 1 2.0 ug/L 1,2-Dibromoethane (EDB) ND 2.0 ug/L Dibromomethane (EDB) ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L 1,2-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene	Chlorobenzene	ND	2.0	ug/L
Chloromethane ND 2.0 ug/L Chloroprene ND 4.0 ug/L Dibromochloromethane ND 2.0 ug/L 1,2-Dibromo-3-chloro- ND 4.0 ug/L propane	Chloroethane	ND	2.0	ug/L
Chloroprene ND 4.0 ug/L Dibromochloromethane ND 2.0 ug/L 1,2-Dibromo-3-chloro- ND 4.0 ug/L propane 1,2-Dibromoethane (EDB) ND 2.0 ug/L Dibromomethane (EDB) ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L 2-butene ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L 1,2-Dichloroethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L cis-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L 2,4-Dioxane ND 400 ug/L	Chloroform	ND	2.0	ug/L
Dibromochloromethane ND 2.0 ug/L 1,2-Dibromo-3-chloro- ND 4.0 ug/L propane ug/L 1,2-Dibromoethane (EDB) ND 2.0 ug/L Dibromomethane ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L 2-butene ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L trans-1,2-Dichloroethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L cis-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L tthylbenzene ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L 2-Hexanone ND 2.0 ug/L Iodomethane	Chloromethane	ND	2.0	ug/L
1,2-Dibromo-3-chloro- propane ND 4.0 ug/L 1,2-Dibromoethane (EDB) ND 2.0 ug/L Dibromomethane ND 2.0 ug/L trans-1,4-Dichloro- 2-butene ND 2.0 ug/L Dichlorodifluoromethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L 1,2-Dichloroethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L cis-1,3-Dichloropropene ND 2.0 ug/L 1,4-Dioxane ND 400 ug/L Ethylbenzene ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L 2-Hexanone ND 2.0 ug/L Iodomethane ND 2.0 ug/L Iodomethane ND 2.0 ug/L	Chloroprene	ND	4.0	ug/L
propane 1,2-Dibromoethane (EDB) ND 2.0 ug/L Dibromomethane ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L 2-butene Dichlorodifluoromethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L trans-1,2-Dichloroethene ND 2.0 ug/L trans-1,2-Dichloropropane ND 2.0 ug/L cis-1,3-Dichloropropane ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L Ethylbenzene ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L Schyl methacrylate ND 2.0 ug/L Iodomethane ND 2.0 ug/L Isobutyl alcohol ND 100 ug/L	Dibromochloromethane	ND	2.0	ug/L
1,2-Dibromoethane (EDB) ND 2.0 ug/L Dibromomethane ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L 2-butene V 2.0 ug/L Dichlorodifluoromethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L trans-1,2-Dichloroethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L cis-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L 1,4-Dioxane ND 400 ug/L Ethylbenzene ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L 2-Hexanone ND 2.0 ug/L Iodomethane ND 2.0 ug/L Iodomethane ND 2.0 ug/L Iodomethane ND 2.0	1,2-Dibromo-3-chloro-	ND	4.0	ug/L
Dibromomethane ND 2.0 ug/L trans-1,4-Dichloro- ND 2.0 ug/L 2-butene Dichlorodifluoromethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L 1,2-Dichloroethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L 1,4-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L 1,4-Dioxane ND 400 ug/L Ethylbenzene ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L Ichyl methane ND 2.0 ug/L Ichyl Ichyl alcohol ND 100 ug/L Ichyl Ichyl alcohol ND 100 ug/L	propane			
trans-1,4-Dichloro- 2-butene Dichlorodifluoromethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L trans-1,2-Dichloroethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,4-Dioxane ND 400 ug/L Ethylbenzene ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L Iodomethane	1,2-Dibromoethane (EDB)	ND	2.0	ug/L
2-butene Dichlorodifluoromethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L trans-1,2-Dichloroethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L cis-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L 2-Hexanone ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L 2-Hexanone ND 2.0 ug/L Iodomethane ND 2.0 ug/L Isobutyl alcohol ND 100 ug/L	Dibromomethane	ND	2.0	ug/L
Dichlorodifluoromethane ND 2.0 ug/L 1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L trans-1,2-Dichloroethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L cis-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,d-Dioxane ND 2.0 ug/L 2-Hexanone ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L 2-Hexanone ND 2.0 ug/L Iodomethane ND 2.0 ug/L Isobutyl alcohol ND 100 ug/L	trans-1,4-Dichloro-	ND	2.0	ug/L
1,1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L trans-1,2-Dichloroethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L cis-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L Ethylbenzene ND 400 ug/L Ethylbenzene ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L Iodomethane ND 2.0 ug/L Isobutyl alcohol ND 100 ug/L	2-butene			
1,2-DichloroethaneND2.0ug/L1,1-DichloroetheneND2.0ug/Ltrans-1,2-DichloroetheneND2.0ug/L1,2-DichloropropaneND2.0ug/Lcis-1,3-DichloropropeneND2.0ug/Ltrans-1,3-DichloropropeneND2.0ug/L1,4-DioxaneND400ug/LEthylbenzeneND2.0ug/LEthyl methacrylateND2.0ug/L2-HexanoneND20ug/LIodomethaneND2.0ug/LIsobutyl alcoholND100ug/L	Dichlorodifluoromethane	ND	2.0	ug/L
1,1-Dichloroethene ND 2.0 ug/L trans-1,2-Dichloroethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L cis-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-	1,1-Dichloroethane	ND	2.0	ug/L
trans-1,2-Dichloroethene ND 2.0 ug/L 1,2-Dichloropropane ND 2.0 ug/L cis-1,3-Dichloropropene ND 2.0 ug/L trans-1,3-Dichloropropene ND 2.0 ug/L 1,4-Dioxane ND 400 ug/L Ethylbenzene ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L 2-Hexanone ND 2.0 ug/L Iodomethane ND 2.0 ug/L Isobutyl alcohol ND 100 ug/L	1,2-Dichloroethane	ND	2.0	ug/L
1,2-DichloropropaneND2.0ug/Lcis-1,3-DichloropropeneND2.0ug/Ltrans-1,3-DichloropropeneND2.0ug/L1,4-DioxaneND400ug/LEthylbenzeneND2.0ug/LEthyl methacrylateND2.0ug/L2-HexanoneND20ug/LIodomethaneND2.0ug/LIsobutyl alcoholND100ug/L	1,1-Dichloroethene	ND	2.0	ug/L
cis-1,3-DichloropropeneND2.0ug/Ltrans-1,3-DichloropropeneND2.0ug/L1,4-DioxaneND400ug/LEthylbenzeneND2.0ug/LEthyl methacrylateND2.0ug/L2-HexanoneND20ug/LIodomethaneND2.0ug/LIsobutyl alcoholND100ug/L	trans-1,2-Dichloroethene	ND	2.0	ug/L
trans-1,3-Dichloropropene ND 2.0 ug/L 1,4-Dioxane ND 400 ug/L Ethylbenzene ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L 2-Hexanone ND 20 ug/L Iodomethane ND 2.0 ug/L Isobutyl alcohol ND 100 ug/L	1,2-Dichloropropane	ND	2.0	ug/L
1,4-DioxaneND400ug/LEthylbenzeneND2.0ug/LEthyl methacrylateND2.0ug/L2-HexanoneND20ug/LIodomethaneND2.0ug/LIsobutyl alcoholND100ug/L	cis-1,3-Dichloropropene	ND	2.0	ug/L
Ethylbenzene ND 2.0 ug/L Ethyl methacrylate ND 2.0 ug/L 2-Hexanone ND 20 ug/L Iodomethane ND 2.0 ug/L Isobutyl alcohol ND 100 ug/L	trans-1,3-Dichloropropene	ND	2.0	ug/L
Ethyl methacrylate ND 2.0 ug/L 2-Hexanone ND 20 ug/L Iodomethane ND 2.0 ug/L Isobutyl alcohol ND 100 ug/L	1,4-Dioxane	ND	400	ug/L
2-Hexanone ND 20 ug/L Iodomethane ND 2.0 ug/L Isobutyl alcohol ND 100 ug/L	Ethylbenzene	ND	2.0	ug/L
IodomethaneND2.0ug/LIsobutyl alcoholND100ug/L	Ethyl methacrylate	ND	2.0	ug/L
Isobutyl alcohol ND 100 ug/L	2-Hexanone	ND	20	ug/L
	Iodomethane	ND	2.0	ug/L
Methacrylonitrile ND 4.0 ug/L	Isobutyl alcohol	ND	100	ug/L
	Methacrylonitrile	ND	4.0	ug/L

Client Sample ID: MW-11

GC/MS Volatiles

Lot-Sample #...: A0K180499-007 Work Order #...: L98KA1AH Matrix.....: WG

		REPORTIN	rG
PARAMETER	RESULT	LIMIT	UNITS
Methylene chloride	ND	2.0	ug/L
Methyl methacrylate	ND	4.0	ug/L
4-Methyl-2-pentanone	1.6 J	20	ug/L
(MIBK)			
Propionitrile	ND	8.0	ug/L
Styrene	ND	2.0	ug/L
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L
Tetrachloroethene	ND	2.0	ug/L
Toluene	ND	2.0	ug/L
1,1,1-Trichloroethane	ND	2.0	ug/L
1,1,2-Trichloroethane	ND	2.0	ug/L
Trichloroethene	ND	2.0	ug/L
Trichlorofluoromethane	ND	2.0	ug/L
1,2,3-Trichloropropane	ND	2.0	ug/L
Vinyl acetate	ND	4.0	ug/L
Vinyl chloride	ND	2.0	ug/L
Xylenes (total)	ND	4.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	91	(75 - 12	1)
1,2-Dichloroethane-d4	81	(63 - 12	
Toluene-d8	88	(74 - 11	5)
4-Bromofluorobenzene	105	(66 - 11	7\

J Estimated result. Result is less than RL.

MW-11

GC/MS Volatiles

Lot-Sample #: A0K180499-007 Work Order #: L98KA1AH Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	
PARAMETER	CAS #	RESULT	TIME	UNITS
1-Propene, 2-methyl-	115-11-7	3.5 NJ M	1.6945	ug/L
tert-Butyl Alcohol		340 Q	3.174	ug/L

Q: Result was quantitated against the response factor of a calibration standard.

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-11

GC/MS Semivolatiles

Lot-Sample #...: A0K180499-007 Work Order #...: L98KA1AJ Matrix.....: WG

Date Sampled...: 11/17/10 13:20 Date Received..: 11/18/10 Prep Date....: 11/22/10 Analysis Date..: 12/02/10

Prep Batch #...: 0325050

Dilution Factor: 10 Method.....: SW846 8270C

		REPORTING	
PARAMETER	RESULT	LIMIT	<u>UNITS</u>
Phenol	ND	10	ug/L
bis(2-Chloroethyl)-	ND	10	ug/L
ether			
2-Chlorophenol	ND	10	ug/L
1,3-Dichlorobenzene	ND	10	ug/L
1,4-Dichlorobenzene	ND	10	ug/L
1,2-Dichlorobenzene	ND	10	ug/L
2-Methylphenol	ND	10	ug/L
2,2'-oxybis(1-Chloro-	ND	10	ug/L
propane)			
4-Methylphenol	ND	10	ug/L
N-Nitrosodi-n-propyl-	ND	10	ug/L
amine			
Hexachloroethane	ND	10	ug/L
Nitrobenzene	ND	10	ug/L
Isophorone	ND	10	ug/L
2-Nitrophenol	ND	20	ug/L
2,4-Dimethylphenol	ND	20	ug/L
bis(2-Chloroethoxy)	ND	10	ug/L
methane			
2,4-Dichlorophenol	ND	20	ug/L
1,2,4-Trichloro-	ND	10	ug/L
benzene			
Naphthalene	ND	2.0	ug/L
4-Chloroaniline	ND	20	ug/L
Hexachlorobutadiene	ND	10	ug/L
4-Chloro-3-methylphenol	ND	20	ug/L
2-Methylnaphthalene	ND	2.0	ug/L
Hexachlorocyclopenta-	ND	100	ug/L
diene			
2,4,6-Trichloro-	ND	50	ug/L
phenol			
2,4,5-Trichloro-	ND	50	ug/L
phenol			
2-Chloronaphthalene	ND	10	ug/L
2-Nitroaniline	ND	20	ug/L
Dimethyl phthalate	ND	10	ug/L
Acenaphthylene	ND	2.0	ug/L
2,6-Dinitrotoluene	ND	50	ug/L

Client Sample ID: MW-11

GC/MS Semivolatiles

Lot-Sample #:	A0K180499-007	Work Order #	: T.98KA1A.T	Matrix	: WG
TOL-DUMBLE #	AUNIOUESSION	MOTY OTGET #	DACKATAO	Matilx	WC

		REPORTING	<u>!</u>
PARAMETER	RESULT	LIMIT	<u>UNITS</u>
3-Nitroaniline	ND	20	ug/L
Acenaphthene	ND	2.0	ug/L
2,4-Dinitrophenol	ND	50	ug/L
4-Nitrophenol	ND	50	ug/L
Dibenzofuran	ND	10	ug/L
2,4-Dinitrotoluene	ND	50	ug/L
Diethyl phthalate	ND	10	ug/L
4-Chlorophenyl phenyl	ND	20	ug/L
ether	ND	20	ид/ п
Fluorene	ND	2.0	ug/L
4-Nitroaniline	ND	20	
4,6-Dinitro-		50	ug/L
	ND	50	ug/L
2-methylphenol	ND	1.0	/T
N-Nitrosodiphenylamine	ND	10	ug/L
4-Bromophenyl phenyl ether	ND	20	ug/L
Hexachlorobenzene	ND	2.0	ug/L
Pentachlorophenol	ND	50	ug/L
Phenanthrene	ND	2.0	ug/L
Anthracene	ND	2.0	ug/L
Carbazole	ND	10	
Di-n-butyl phthalate	ND	10	ug/L
			ug/L
Fluoranthene	ND	2.0	ug/L
Pyrene	ND	2.0	ug/L
Butyl benzyl phthalate	ND	10	ug/L
3,3'-Dichlorobenzidine	ND	50	ug/L
Benzo(a)anthracene	ND	2.0	ug/L
Chrysene	ND	2.0	ug/L
bis(2-Ethylhexyl)	ND	20	ug/L
phthalate			
Di-n-octyl phthalate	ND	10	ug/L
Benzo(b)fluoranthene	ND	2.0	ug/L
Benzo(k)fluoranthene	ND	2.0	ug/L
Benzo(a)pyrene	ND	2.0	ug/L
Indeno(1,2,3-cd)pyrene	ND	2.0	ug/L
Dibenz(a,h)anthracene	ND	2.0	ug/L
Benzo(ghi)perylene	ND	2.0	ug/L
		DEGOTTE	
GUDD O GA EE	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	65 DIL	(27 - 111	
2-Fluorobiphenyl	66 DIL	(28 - 110	
Terphenyl-d14	70 DIL	(37 - 119	
Phenol-d5	67 DIL	(10 - 110	
2-Fluorophenol	55 DIL	(10 - 110	
2,4,6-Tribromophenol	85 DIL	(22 - 120)

Client Sample ID: MW-11

GC/MS Semivolatiles

Lot-Sample #...: A0K180499-007 Work Order #...: L98KA1AJ Matrix.....: WG

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

MW-11

GC/MS Semivolatiles

Lot-Sample #: A0K180499-007 Work Order #: L98KA1AJ Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED		RETENTION	
PARAMETER	CAS #	RESULT		TIME	<u>UNITS</u>
Unknown		130 Ј	Μ	3.6743	ug/L
Unknown		140 J	Μ	4.0434	ug/L
Unknown		390 J	Μ	4.4445	ug/L
Unknown		150 J	Μ	4.4927	ug/L
Unknown		230 Ј	Μ	4.6157	ug/L
Unknown		650 J	Μ	5.3163	ug/L
Unknown		410 J	Μ	5.3431	ug/L
Unknown		91 J	Μ	5.4233	ug/L
Unknown		55 J	М	5.4554	ug/L
Unknown		72 J	Μ	5.557	ug/L
Unknown		160 J	Μ	5.6159	ug/L
Unknown		140 J	Μ	5.6747	ug/L
Unknown		65 J	Μ	5.8031	ug/L
Unknown		490 J	Μ	6.1293	ug/L
Unknown		52 J	Μ	6.1721	ug/L
Unknown		190 J	Μ	6.4449	ug/L
Unknown		280 J	Μ	6.6054	ug/L
Unknown		140 J	Μ	6.7712	ug/L
Unknown		100 J	M	6.8995	ug/L
Unknown		87 J	Μ	7.3007	ug/L
Unknown		910 J	Μ	7.5949	ug/L
Unknown		49 J	Μ	8.2955	ug/L
Unknown		46 J	M	8.4827	ug/L
Unknown		43 J	M	8.5041	ug/L
Unknown		470 J	M	9.0443	ug/L
NOTE (G)					

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-11

TOTAL Metals

Lot-Sample #...: A0K180499-007 **Matrix.....:** WG

Date Sampled...: 11/17/10 13:20 Date Received..: 11/18/10

PARAMETER	RESULT	REPORTING LIMIT		METHO:	D	PREPARATION- ANALYSIS DATE	WORK ORDER #
							<u> </u>
Prep Batch #							
Arsenic	8.3 B	10.0	_	SW846	6010B	11/19-11/23/10	L98KA1AK
		Dilution Fact	or: 1				
Lead	3.0	3.0	11 a /T.	SW846	6010B	11/19-11/23/10	T.98KA1AT.
2000	3.0	Dilution Fact		5110 10	00102	11,13 11,23,10	250141212
Selenium	ND	5.0	_	SW846	6010B	11/19-11/23/10	L98KA1AM
		Dilution Fact	or: 1				
Thallium	9.8 B,J	10.0	11 a /T.	SW846	6010B	11/19-11/23/10	T.98KA1AN
11101111	J.0 270	Dilution Fact		5110 10	00102	11,10 11,23,10	2301412121
Antimony	ND	60.0	_	SW846	6010B	11/19-11/23/10	L98KA1AP
		Dilution Fact	or: 1				
Beryllium	ND	5.0	11 a / T.	SW846	6010B	11/19-11/23/10	T.98KA1AO
Dergreeum	112	Dilution Fact	_	511010	00102	11/10 11/23/10	
Cadmium	ND	5.0		SW846	6010B	11/19-11/23/10	L98KA1AR
		Dilution Fact	or: 1				
Chromium	ND	10.0	11 a /T,	SW846	6010B	11/19-11/23/10	T.98KA1AT
		Dilution Fact	_			,,,	
Copper	ND	25.0	_	SW846	6010B	11/19-11/23/10	L98KA1AU
		Dilution Fact	or: 1				
Nickel	32.0 B	40.0	uq/L	SW846	6010B	11/19-11/23/10	L98KA1AV
		Dilution Fact	_				
Silver	ND	10.0	_	SW846	6010B	11/19-11/23/10	L98KA1AW
		Dilution Fact	or: I				
Zinc	20.3	20.0	ug/L	SW846	6010B	11/19-11/23/10	L98KA1AX
		Dilution Fact					
		0.65	,_		- 4 0		- 0.0
Mercury	ND	0.20	ug/L	SW846	7470A	11/19-11/22/10	L98KAlAF
		Dilution Fact	OI • I				

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-11

DISSOLVED Metals

Lot-Sample #...: A0K180499-007 **Matrix.....:** WG

Date Sampled...: 11/17/10 13:20 Date Received..: 11/18/10

PARAMETER	RESULT	REPORTING LIMIT		METHO:	D	PREPARATION- ANALYSIS DATE	WORK ORDER #
PARAMETER	KESULI		ONIIS	MEINO	D	ANALISIS DAIE	OKDEK #
Prep Batch #	: 0323019						
Arsenic	10.7	10.0	ug/L	SW846	6010в	11/19-11/24/10	L98KA1A0
		Dilution Fact	or: 1				
Lead	ND	3.0	ug/L	SW846	6010B	11/19-11/23/10	L98KA1A1
		Dilution Fact	or: 1				
Selenium	NID	E 0	119 /T	CM046	6010B	11/10 11/22/10	T 0 0 12 7 1 7 2
Setentulli	ND	5.0 Dilution Fact		SW040	0010B	11/19-11/23/10	L96KAIAZ
		DITUCION FACE	01. 1				
Thallium	5.8 B,J	10.0	ug/L	SW846	6010в	11/19-11/23/10	L98KA1A3
		Dilution Fact					
Antimony	2.9 B	60.0	_	SW846	6010B	11/19-11/23/10	L98KA1A4
		Dilution Fact	or: 1				
Beryllium	ND	5.0	ug/L	SM846	6010B	11/19-11/23/10	T.98K7175
Вегуттиш	ND	Dilution Fact	_	SWOTO	0010B	11/19-11/23/10	LJOKATAJ
		principal race					
Cadmium	ND	5.0	ug/L	SW846	6010B	11/19-11/23/10	L98KA1A6
		Dilution Fact	or: 1				
Chromium	ND	10.0	_	SW846	6010B	11/19-11/23/10	L98KA1A7
		Dilution Fact	or: 1				
Copper	ND	25.0	11 a / L	SW846	6010B	11/19-11/23/10	T.98KA1AA
COPPOI		Dilution Fact	_	2,1010	00102	11, 13 11, 20, 10	
Nickel	29.6 В	40.0	ug/L	SW846	6010B	11/19-11/23/10	L98KA1AC
		Dilution Fact	or: 1				
G ' 1	1.10	10.0	/ -	G110.4.6	6010D	11/10 11/02/10	T 0.0117175
Silver	ND	10.0 Dilution Fact	_	SW846	6010B	11/19-11/23/10	L98KAIAD
		DITUCTOR FACE	01. 1				
Zinc	18.1 B	20.0	ug/L	SW846	6010в	11/19-11/23/10	L98KA1AE
		Dilution Fact					
Mercury	ND	0.20	ug/L	SW846	7470A	11/19-11/22/10	L98KA1AG
		Dilution Fact	or: 1				

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-12

GC/MS Volatiles

Lot-Sample #...: A0K180499-008 Work Order #...: L98KC1AH Matrix.....: WG

Date Sampled...: 11/17/10 14:20 Date Received..: 11/18/10
Prep Date.....: 11/30/10 Analysis Date..: 11/30/10

Prep Batch #...: 0335126

Dilution Factor: 2 Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	<u>LIMIT</u>	<u>UNITS</u>
Acetone	9.1 J	20	ug/L
Acetonitrile	ND	40	ug/L
Acrolein	ND	40	ug/L
Acrylonitrile	ND	40	ug/L
Allyl chloride	ND	4.0	ug/L
Benzene	ND	2.0	ug/L
Bromodichloromethane	ND	2.0	ug/L
Bromoform	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
2-Butanone (MEK)	ND	20	ug/L
Carbon disulfide	ND	2.0	ug/L
Carbon tetrachloride	ND	2.0	ug/L
Chlorobenzene	ND	2.0	ug/L
Chloroethane	ND	2.0	ug/L
Chloroform	ND	2.0	ug/L
Chloromethane	ND	2.0	ug/L
Chloroprene	ND	4.0	ug/L
Dibromochloromethane	ND	2.0	ug/L
1,2-Dibromo-3-chloro-	ND	4.0	ug/L
propane			
1,2-Dibromoethane (EDB)	ND	2.0	ug/L
Dibromomethane	ND	2.0	ug/L
trans-1,4-Dichloro-	ND	2.0	ug/L
2-butene			
Dichlorodifluoromethane	ND	2.0	ug/L
1,1-Dichloroethane	ND	2.0	ug/L
1,2-Dichloroethane	ND	2.0	ug/L
1,1-Dichloroethene	ND	2.0	ug/L
trans-1,2-Dichloroethene	ND	2.0	ug/L
1,2-Dichloropropane	ND	2.0	ug/L
cis-1,3-Dichloropropene	ND	2.0	ug/L
trans-1,3-Dichloropropene	ND	2.0	ug/L
1,4-Dioxane	ND	400	ug/L
Ethylbenzene	ND	2.0	ug/L
Ethyl methacrylate	ND	2.0	ug/L
2-Hexanone	ND	20	ug/L
Iodomethane	ND	2.0	ug/L
Isobutyl alcohol	ND	100	ug/L
Methacrylonitrile	ND	4.0	ug/L

Client Sample ID: MW-12

GC/MS Volatiles

Lot-Sample #...: A0K180499-008 Work Order #...: L98KC1AH Matrix.....: WG

		REPORTING	
PARAMETER	RESULT	LIMIT	<u>UNITS</u>
Methylene chloride	ND	2.0	ug/L
Methyl methacrylate	ND	4.0	ug/L
4-Methyl-2-pentanone	ND	20	ug/L
(MIBK)			
Propionitrile	ND	8.0	ug/L
Styrene	ND	2.0	ug/L
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L
Tetrachloroethene	ND	2.0	ug/L
Toluene	ND	2.0	ug/L
1,1,1-Trichloroethane	ND	2.0	ug/L
1,1,2-Trichloroethane	ND	2.0	ug/L
Trichloroethene	ND	2.0	ug/L
Trichlorofluoromethane	ND	2.0	ug/L
1,2,3-Trichloropropane	ND	2.0	ug/L
Vinyl acetate	ND	4.0	ug/L
Vinyl chloride	ND	2.0	ug/L
Xylenes (total)	ND	4.0	ug/L
	_		
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	<u>LIMITS</u>	_
Dibromofluoromethane	94	(75 - 121)	
1,2-Dichloroethane-d4	83	(63 - 129)	
Toluene-d8	87	(74 - 115))
4-Bromofluorobenzene	104	(66 - 117))

J Estimated result. Result is less than RL.

MW-12

GC/MS Volatiles

Lot-Sample #: A0K180499-008 Work Order #: L98KC1AH Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

Q: Result was quantitated against the response factor of a calibration standard.

Client Sample ID: MW-12

GC/MS Semivolatiles

Lot-Sample #...: A0K180499-008 Work Order #...: L98KC1AJ Matrix.....: WG

Date Sampled...: 11/17/10 14:20 Date Received..: 11/18/10 Prep Date....: 11/22/10 Analysis Date..: 12/02/10

Prep Batch #...: 0325050

Dilution Factor: 5 Method.....: SW846 8270C

		REPORTING	
PARAMETER	RESULT	LIMIT	<u>UNITS</u>
Phenol	ND	5.0	ug/L
bis(2-Chloroethyl)-	ND	5.0	ug/L
ether			
2-Chlorophenol	ND	5.0	ug/L
1,3-Dichlorobenzene	ND	5.0	ug/L
1,4-Dichlorobenzene	ND	5.0	ug/L
1,2-Dichlorobenzene	ND	5.0	ug/L
2-Methylphenol	ND	5.0	ug/L
2,2'-oxybis(1-Chloro-	ND	5.0	ug/L
propane)			
4-Methylphenol	ND	5.0	ug/L
N-Nitrosodi-n-propyl-	ND	5.0	ug/L
amine			
Hexachloroethane	ND	5.0	ug/L
Nitrobenzene	ND	5.0	ug/L
Isophorone	ND	5.0	ug/L
2-Nitrophenol	ND	10	ug/L
2,4-Dimethylphenol	ND	10	ug/L
bis(2-Chloroethoxy)	ND	5.0	ug/L
methane			
2,4-Dichlorophenol	ND	10	ug/L
1,2,4-Trichloro-	ND	5.0	ug/L
benzene			
Naphthalene	ND	1.0	ug/L
4-Chloroaniline	ND	10	ug/L
Hexachlorobutadiene	ND	5.0	ug/L
4-Chloro-3-methylphenol	ND	10	ug/L
2-Methylnaphthalene	ND	1.0	ug/L
Hexachlorocyclopenta-	ND	50	ug/L
diene			
2,4,6-Trichloro-	ND	25	ug/L
phenol			
2,4,5-Trichloro-	ND	25	ug/L
phenol			
2-Chloronaphthalene	ND	5.0	ug/L
2-Nitroaniline	ND	10	ug/L
Dimethyl phthalate	ND	5.0	ug/L
Acenaphthylene	ND	1.0	ug/L
2,6-Dinitrotoluene	ND	25	ug/L

Client Sample ID: MW-12

GC/MS Semivolatiles

Lot-Sample #:	A0K180499-008	Work Order	# : T.98KC1A.T	Matrix	: WG
Lot-Sample #:	AUK18U499-UU8	work Order	#: L98KCIAJ	Matrix	= W

		REPORTING	
PARAMETER	RESULT	LIMIT	<u>UNITS</u>
3-Nitroaniline	ND	10	ug/L
Acenaphthene	ND	1.0	ug/L
2,4-Dinitrophenol	ND	25	ug/L
4-Nitrophenol	ND	25	ug/L
Dibenzofuran	ND	5.0	ug/L
2,4-Dinitrotoluene	ND	25	ug/L
Diethyl phthalate	ND	5.0	ug/L
4-Chlorophenyl phenyl	ND	10	ug/L
ether			
Fluorene	ND	1.0	ug/L
4-Nitroaniline	ND	10	ug/L
4,6-Dinitro-	ND	25	ug/L
2-methylphenol			J.
N-Nitrosodiphenylamine	ND	5.0	ug/L
4-Bromophenyl phenyl	ND	10	ug/L
ether			J.
Hexachlorobenzene	ND	1.0	ug/L
Pentachlorophenol	ND	25	ug/L
Phenanthrene	ND	1.0	ug/L
Anthracene	ND	1.0	ug/L
Carbazole	ND	5.0	ug/L
Di-n-butyl phthalate	ND	5.0	ug/L
Fluoranthene	ND	1.0	ug/L
Pyrene	ND	1.0	ug/L
Butyl benzyl phthalate	ND	5.0	ug/L
3,3'-Dichlorobenzidine	ND	25	ug/L
Benzo(a)anthracene	ND	1.0	ug/L
Chrysene	ND	1.0	ug/L
bis(2-Ethylhexyl)	6.7 J,B	10	ug/L
phthalate			
Di-n-octyl phthalate	ND	5.0	ug/L
Benzo(b)fluoranthene	ND	1.0	ug/L
Benzo(k)fluoranthene	ND	1.0	ug/L
Benzo(a)pyrene	ND	1.0	ug/L
Indeno(1,2,3-cd)pyrene	ND	1.0	ug/L
Dibenz(a,h)anthracene	ND	1.0	ug/L
Benzo(ghi)perylene	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Nitrobenzene-d5	52 DIL	(27 - 111)	
2-Fluorobiphenyl	55 DIL	(28 - 110)	
Terphenyl-d14	63 DIL	(37 - 119)	
Phenol-d5	36 DIL	(10 - 110)	
2-Fluorophenol	21 DIL	(10 - 110)	
2,4,6-Tribromophenol	62 DIL	(22 - 120)	

Client Sample ID: MW-12

GC/MS Semivolatiles

Lot-Sample #...: A0K180499-008 Work Order #...: L98KC1AJ Matrix.....: WG

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

- J Estimated result. Result is less than RL.
- B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

MW-12

GC/MS Semivolatiles

Lot-Sample #: A0K180499-008 Work Order #: L98KC1AJ Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED		RETENTION	
PARAMETER	CAS #	RESULT		TIME	UNITS
Unknown		39 J	M	4.0436	ug/L
Unknown		140 J	M	4.4019	ug/L
Unknown		51 J	М	4.4929	ug/L
Unknown		72 J	M	4.5624	ug/L
Unknown		160 J	M	4.5945	ug/L
Unknown		48 J	M	4.6266	ug/L
Unknown		23 J	M	4.9528	ug/L
Unknown		30 J	M	5.3379	ug/L
Unknown		37 J	M	5.4342	ug/L
Unknown		38 J	M	5.5572	ug/L
Unknown		270 J	M	5.6161	ug/L
Unknown		110 J	M	5.7444	ug/L
Unknown		30 J	M	6.7714	ug/L
Unknown		32 J	M	6.8997	ug/L
Unknown		31 J	M	6.98	ug/L
Unknown		27 J	M	7.3918	ug/L
Unknown		310 J	M	7.5897	ug/L
Unknown		43 J	M	7.7555	ug/L
Unknown		29 J	M	7.9695	ug/L
Unknown		39 J	M	8.1781	ug/L
Unknown		36 J	M	8.3011	ug/L
Unknown		45 J	M	8.836	ug/L
Unknown		120 J	M	8.9108	ug/L
Unknown		370 J	M	9.0499	ug/L
NOTE(S):					

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-12

TOTAL Metals

Lot-Sample #...: A0K180499-008 **Matrix.....:** WG

Date Sampled...: 11/17/10 14:20 Date Received..: 11/18/10

PARAMETER	RESULT	REPORTING	G <u>UNITS</u>	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Selenium	.: 0323019 ND	5.0 Dilution Fact	ug/L cor: 1	SW846 6010B	11/19-11/23/10	L98KC1AM
Thallium	8.6 B,J	10.0 Dilution Fact	ug/L	SW846 6010B	11/19-11/23/10	L98KC1AN
Arsenic	5.0 в	10.0 Dilution Fact	ug/L	SW846 6010B	11/19-11/23/10	L98KC1AK
Lead	ND	3.0 Dilution Fact	ug/L cor: 1	SW846 6010B	11/19-11/23/10	L98KC1AL
Antimony	2.3 B	60.0 Dilution Fact	ug/L	SW846 6010B	11/19-11/23/10	L98KC1AP
Beryllium	ND	5.0 Dilution Fact	ug/L cor: 1	SW846 6010B	11/19-11/23/10	L98KC1AQ
Cadmium	0.67 в	5.0 Dilution Fact	ug/L	SW846 6010B	11/19-11/23/10	L98KC1AR
Chromium	ND	10.0 Dilution Fact	ug/L cor: 1	SW846 6010B	11/19-11/23/10	L98KC1AT
Copper	ND	25.0 Dilution Fact	ug/L cor: 1	SW846 6010B	11/19-11/23/10	L98KC1AU
Nickel	50.4	40.0 Dilution Fact	ug/L	SW846 6010B	11/19-11/23/10	L98KC1AV
Silver	ND	10.0 Dilution Fact	ug/L cor: 1	SW846 6010B	11/19-11/23/10	L98KC1AW
Zinc	8.2 B	20.0 Dilution Fact	ug/L	SW846 6010B	11/19-11/23/10	L98KC1AX
Mercury	ND	0.20 Dilution Fact	ug/L tor: 1	SW846 7470A	11/19-11/22/10	L98KC1AF

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-12

DISSOLVED Metals

Lot-Sample #...: A0K180499-008 **Matrix.....:** WG

Date Sampled...: 11/17/10 14:20 Date Received..: 11/18/10

PARAMETER	RESULT	REPORTING LIMIT	UNITS	<u>METHOI</u>)	PREPARATION- ANALYSIS DATE	WORK ORDER #
<pre>Prep Batch # Selenium</pre>	: 0323019 ND	5.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98KC1A2
Thallium	9.3 B,J	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98KC1A3
Arsenic	6.5 B	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98KC1A0
Lead	ND	3.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98KC1A1
Antimony	ND	60.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98KC1A4
Beryllium	ND	5.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98KC1A5
Cadmium	ND	5.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98KC1A6
Chromium	ND	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98KC1A7
Copper	ND	25.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98KC1AA
Nickel	53.0	40.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98KC1AC
Silver	ND	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98KC1AD
Zinc	13.4 в	20.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/19-11/23/10	L98KC1AE
Mercury	ND	0.20 Dilution Fact	ug/L or: 1	SW846	7470A	11/19-11/22/10	L98KC1AG

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: EQUIPMENT BLANK #1

GC/MS Volatiles

Lot-Sample #...: A0K180499-009 Work Order #...: L98KE1AH Matrix.....: WQ

Date Sampled...: 11/17/10 15:10 Date Received..: 11/18/10 Prep Date....: 11/30/10 Analysis Date..: 11/30/10

Prep Batch #...: 0335126

Dilution Factor: 1 Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND	10	ug/L
Acetonitrile	ND	20	ug/L
Acrolein	ND	20	ug/L
Acrylonitrile	ND	20	ug/L
Allyl chloride	ND	2.0	ug/L
Benzene	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	uq/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	uq/L
2-Butanone (MEK)	ND	10	ug/L
Carbon disulfide	ND	1.0	uq/L
Carbon tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	uq/L
Chloroethane	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
Chloroprene	ND	2.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,2-Dibromo-3-chloro-	ND	2.0	ug/L
propane			_
1,2-Dibromoethane (EDB)	ND	1.0	ug/L
Dibromomethane	ND	1.0	ug/L
trans-1,4-Dichloro-	ND	1.0	ug/L
2-butene			
Dichlorodifluoromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
1,4-Dioxane	ND	200	ug/L
Ethylbenzene	ND	1.0	ug/L
Ethyl methacrylate	ND	1.0	ug/L
2-Hexanone	ND	10	ug/L
Iodomethane	ND	1.0	ug/L
Isobutyl alcohol	ND	50	ug/L
Methacrylonitrile	ND	2.0	ug/L

Client Sample ID: EQUIPMENT BLANK #1

GC/MS Volatiles

Lot-Sample #...: A0K180499-009 Work Order #...: L98KE1AH Matrix.....: WQ

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Methylene chloride	ND	1.0	ug/L
Methyl methacrylate	ND	2.0	ug/L
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L
Propionitrile	ND	4.0	ug/L
Styrene	ND	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
Vinyl acetate	ND	2.0	ug/L
Vinyl chloride	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Dibromofluoromethane	96	(75 - 121))
1,2-Dichloroethane-d4	85	(63 - 129))
Toluene-d8	89	(74 - 115))
4-Bromofluorobenzene	103	(66 - 117))

EQUIPMENT BLANK #1

GC/MS Volatiles

Lot-Sample #: A0K180499-009	Work Order #: L98	KE1AH	Matrix:	MQ
MASS SPECTROMETER/DATA SYSTEM (I	MSDS) TENTATIVELY	IDENTIFIED	COMPOUNDS	
PARAMETER None		ESTIMATED RESULT	RETENTION TIME	<u>UNITS</u> ug/L

Client Sample ID: EQUIPMENT BLANK #1

GC/MS Semivolatiles

Lot-Sample #...: A0K180499-009 Work Order #...: L98KE1AJ Matrix.....: WQ

Date Sampled...: 11/17/10 15:10 Date Received..: 11/18/10 Prep Date....: 11/22/10 Analysis Date..: 12/01/10

Prep Batch #...: 0325050

Dilution Factor: 1 Method.....: SW846 8270C

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Phenol	ND	1.0	ug/L
bis(2-Chloroethyl)-	ND	1.0	ug/L
ether			3,
2-Chlorophenol	ND	1.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
2-Methylphenol	ND	1.0	ug/L
2,2'-oxybis(1-Chloro- propane)	ND	1.0	ug/L
4-Methylphenol	ND	1.0	ug/L
N-Nitrosodi-n-propyl-	ND	1.0	ug/L
amine			3/ -
Hexachloroethane	ND	1.0	ug/L
Nitrobenzene	ND	1.0	ug/L
Isophorone	ND	1.0	ug/L
2-Nitrophenol	ND	2.0	ug/L
2,4-Dimethylphenol	ND	2.0	ug/L
bis(2-Chloroethoxy)	ND	1.0	ug/L
methane			_
2,4-Dichlorophenol	ND	2.0	ug/L
1,2,4-Trichloro-	ND	1.0	ug/L
benzene			
Naphthalene	ND	0.20	ug/L
4-Chloroaniline	ND	2.0	ug/L
Hexachlorobutadiene	ND	1.0	ug/L
4-Chloro-3-methylphenol	ND	2.0	ug/L
2-Methylnaphthalene	ND	0.20	ug/L
Hexachlorocyclopenta-	ND	10	ug/L
diene			
2,4,6-Trichloro-	ND	5.0	ug/L
phenol			
2,4,5-Trichloro-	ND	5.0	ug/L
phenol			
2-Chloronaphthalene	ND	1.0	ug/L
2-Nitroaniline	ND	2.0	ug/L
Dimethyl phthalate	ND	1.0	ug/L
Acenaphthylene	ND	0.20	ug/L
2,6-Dinitrotoluene	ND	5.0	ug/L

Client Sample ID: EQUIPMENT BLANK #1

GC/MS Semivolatiles

Lot-Sample #	: A0K180499-009	Work Order	#: L98KE1AJ	Matrix:	: WQ
--------------	-----------------	------------	-------------	---------	------

		REPORTING	
PARAMETER	RESULT	LIMIT	<u>UNITS</u>
3-Nitroaniline	ND	2.0	ug/L
Acenaphthene	ND	0.20	ug/L
2,4-Dinitrophenol	ND	5.0	ug/L
4-Nitrophenol	ND	5.0	ug/L
Dibenzofuran	ND	1.0	ug/L
2,4-Dinitrotoluene	ND	5.0	ug/L
Diethyl phthalate	ND	1.0	ug/L
4-Chlorophenyl phenyl	ND	2.0	ug/L
ether			
Fluorene	ND	0.20	ug/L
4-Nitroaniline	ND	2.0	ug/L
4,6-Dinitro-	ND	5.0	ug/L
2-methylphenol			
N-Nitrosodiphenylamine	ND	1.0	ug/L
4-Bromophenyl phenyl	ND	2.0	ug/L
ether			
Hexachlorobenzene	ND	0.20	ug/L
Pentachlorophenol	ND	5.0	ug/L
Phenanthrene	ND	0.20	ug/L
Anthracene	ND	0.20	ug/L
Carbazole	ND	1.0	ug/L
Di-n-butyl phthalate	ND	1.0	ug/L
Fluoranthene	ND	0.20	ug/L
Pyrene	ND	0.20	ug/L
Butyl benzyl phthalate	ND	1.0	ug/L
3,3'-Dichlorobenzidine	ND	5.0	ug/L
Benzo(a)anthracene	ND	0.20	ug/L
Chrysene	ND	0.20	ug/L
bis(2-Ethylhexyl)	0.98 J,B	2.0	ug/L
phthalate			
Di-n-octyl phthalate	ND	1.0	ug/L
Benzo(b)fluoranthene	ND	0.20	ug/L
Benzo(k)fluoranthene	ND	0.20	ug/L
Benzo(a)pyrene	ND	0.20	ug/L
Indeno(1,2,3-cd)pyrene	ND	0.20	ug/L
Dibenz(a,h)anthracene	ND	0.20	ug/L
Benzo(ghi)perylene	ND	0.20	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	-
Nitrobenzene-d5	51	(27 - 111)	
2-Fluorobiphenyl	53	(28 - 110)	
Terphenyl-d14	79	(37 - 119)	
Phenol-d5	46	(10 - 110)	
2-Fluorophenol	21	(10 - 110)	
2,4,6-Tribromophenol	59	(22 - 120)	

Client Sample ID: EQUIPMENT BLANK #1

GC/MS Semivolatiles

Lot-Sample #...: A0K180499-009 Work Order #...: L98KE1AJ Matrix.....: WQ

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

EQUIPMENT BLANK #1

GC/MS Semivolatiles

Lot-Sample #: A0K180499-009 Work Order #: L98KE1AJ Matrix: WQ

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTIO	N
PARAMETER	<u>CAS #</u>	RESULT	TIME	<u>UNITS</u>
Oxybenzone	131-57-7	2.5 NJ	м 7.3079	ug/L
Unknown		2.3 J	м 9.1532	ug/L
NOTE(S):				

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: EQUIPMENT BLANK #1

TOTAL Metals

Lot-Sample #...: A0K180499-009 Matrix.....: WQ

Date Sampled...: 11/17/10 15:10 Date Received..: 11/18/10

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #	• 0323019					
Arsenic	ND	10.0 Dilution Factor		SW846 6010B	11/19-11/23/10	L98KE1AK
Lead	ND	3.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98KE1AL
Selenium	ND	5.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98KE1AM
Thallium	ND	10.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98KE1AN
Antimony	ND	60.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98KE1AP
Beryllium	ND	5.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98KE1AQ
Cadmium	ND	5.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98KE1AR
Chromium	ND	10.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98KE1AT
Copper	ND	25.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98KE1AU
Nickel	ND	40.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98KE1AV
Silver	ND	10.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98KE1AW
Zinc	ND	20.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/19-11/23/10	L98KE1AX
Mercury	ND	0.20 Dilution Factor	ug/L or: 1	SW846 7470A	11/19-11/22/10	L98KE1AF

Client Sample ID: EQUIPMENT BLANK #1

DISSOLVED Metals

Lot-Sample #...: A0K180499-009 Matrix.....: WQ

Date Sampled...: 11/17/10 15:10 Date Received..: 11/18/10

PARAMETER	RESULT	REPORTING		METHOD		PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #	3.4 B	10.0	_	SW846 60	010B	11/19-11/23/10	L98KE1A0
Lead	ND	3.0 Dilution Fact	ug/L	SW846 60	010B	11/19-11/23/10	L98KE1A1
Selenium	ND	5.0 Dilution Fact	_	SW846 60	010B	11/19-11/23/10	L98KE1A2
Thallium	6.2 В,Ј	10.0 Dilution Fact	_	SW846 60	010в	11/19-11/23/10	L98KE1A3
Antimony	ND	60.0 Dilution Fact	2	SW846 60	010B	11/19-11/23/10	L98KE1A4
Beryllium	ND	5.0 Dilution Fact	_	SW846 60	010B	11/19-11/23/10	L98KE1A5
Cadmium	ND	5.0 Dilution Fact	2	SW846 60	010B	11/19-11/23/10	L98KE1A6
Chromium	ND	10.0 Dilution Fact	_	SW846 60	010B	11/19-11/23/10	L98KE1A7
Copper	ND	25.0 Dilution Fact	_	SW846 60	010B	11/19-11/23/10	L98KE1AA
Nickel	ND	40.0 Dilution Fact	_	SW846 60	010B	11/19-11/23/10	L98KE1AC
Silver	ND	10.0 Dilution Fact	_	SW846 60	010B	11/19-11/23/10	L98KE1AD
Zinc	ND	20.0 Dilution Fact	ug/L or: 1	SW846 60	010B	11/19-11/23/10	L98KE1AE
Mercury	ND	0.20 Dilution Fact	ug/L or: 1	SW846 74	470A	11/19-11/22/10	L98KE1AG
NOTE(S):							

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: TRIP BLANK

GC/MS Volatiles

Lot-Sample #...: A0K180499-010 Work Order #...: L98KH1AA Matrix.....: WQ

Date Sampled...: 11/17/10 16:00 Date Received..: 11/18/10 Prep Date....: 11/30/10 Analysis Date..: 11/30/10

Prep Batch #...: 0335126

Dilution Factor: 1 Method.....: SW846 8260B

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND	10	ug/L
Acetonitrile	ND	20	uq/L
Acrolein	ND	20	ug/L
Acrylonitrile	ND	20	ug/L
Allyl chloride	ND	2.0	ug/L
Benzene	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	ug/L
2-Butanone (MEK)	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Chloroethane	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
Chloroprene	ND	2.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,2-Dibromo-3-chloro-	ND	2.0	ug/L
propane			
1,2-Dibromoethane (EDB)	ND	1.0	ug/L
Dibromomethane	ND	1.0	ug/L
trans-1,4-Dichloro-	ND	1.0	ug/L
2-butene			
Dichlorodifluoromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
1,4-Dioxane	ND	200	ug/L
Ethylbenzene	ND	1.0	ug/L
Ethyl methacrylate	ND	1.0	ug/L
2-Hexanone	ND	10	ug/L
Iodomethane	ND	1.0	ug/L
Isobutyl alcohol	ND	50	ug/L
Methacrylonitrile	ND	2.0	ug/L

Client Sample ID: TRIP BLANK

GC/MS Volatiles

Lot-Sample #...: A0K180499-010 Work Order #...: L98KH1AA Matrix.....: WQ

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Methylene chloride	ND	1.0	ug/L
Methyl methacrylate	ND	2.0	ug/L
<pre>4-Methyl-2-pentanone (MIBK)</pre>	ND	10	ug/L
Propionitrile	ND	4.0	ug/L
Styrene	ND	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
Vinyl acetate	ND	2.0	ug/L
Vinyl chloride	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	-
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	89	(75 - 12	1)
1,2-Dichloroethane-d4	80	(63 - 12	19)
Toluene-d8	87	(74 - 11	.5)
4-Bromofluorobenzene	102	(66 - 11	7)

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Dibromofluoromethane	89	(75 - 121)
1,2-Dichloroethane-d4	80	(63 - 129)
Toluene-d8	87	(74 - 115)
4-Bromofluorobenzene	102	(66 - 117)

TRIP BLANK

GC/MS Volatiles

Lot-Sample #: A0K180499-010	Work Order #: L98KH1AA	Matrix: WQ
MASS SPECTROMETER/DATA SYSTEM	MSDS) TENTATIVELY IDENT	IFIED COMPOUNDS
PARAMETER	ESTIMA CAS # RESULT	

ug/L

None

QUALITY CONTROL SECTION

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: AOK180499 Work Order #...: MAM2X1AA Matrix.....: WATER

MB Lot-Sample #: A0K300000-286

Prep Date...: 11/29/10
Analysis Date..: 11/29/10
Prep Batch #...: 0334286

Dilution Factor: 1

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acetone	ND	10	ug/L	SW846 8260B
Acetonitrile	ND	20	ug/L	SW846 8260B
Acrolein	ND	20	ug/L	SW846 8260B
Acrylonitrile	ND	20	ug/L	SW846 8260B
Allyl chloride	ND	2.0	ug/L	SW846 8260B
Benzene	ND	1.0	ug/L	SW846 8260B
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B
Bromoform	ND	1.0	ug/L	SW846 8260B
Bromomethane	ND	1.0	ug/L	SW846 8260B
2-Butanone (MEK)	ND	10	ug/L	SW846 8260B
Carbon disulfide	ND	1.0	ug/L	SW846 8260B
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B
Chlorobenzene	ND	1.0	ug/L	SW846 8260B
Chloroethane	ND	1.0	ug/L	SW846 8260B
Chloroform	ND	1.0	ug/L	SW846 8260B
Chloromethane	ND	1.0	ug/L	SW846 8260B
Chloroprene	ND	2.0	ug/L	SW846 8260B
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B
1,2-Dibromo-3-chloro-	ND	2.0	ug/L	SW846 8260B
propane				
1,2-Dibromoethane (EDB)	ND	1.0	ug/L	SW846 8260B
Dibromomethane	ND	1.0	ug/L	SW846 8260B
trans-1,4-Dichloro-	ND	1.0	ug/L	SW846 8260B
2-butene				
Dichlorodifluoromethane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
1,4-Dioxane	ND	200	ug/L	SW846 8260B
Ethylbenzene	ND	1.0	ug/L	SW846 8260B
Ethyl methacrylate	ND	1.0	ug/L	SW846 8260B
2-Hexanone	ND	10	ug/L	SW846 8260B
Iodomethane	ND	1.0	ug/L	SW846 8260B
Isobutyl alcohol	ND	50	ug/L	SW846 8260B
Methacrylonitrile	ND	2.0	ug/L	SW846 8260B
Methylene chloride	ND	1.0	ug/L	SW846 8260B
Methyl methacrylate	ND	2.0	ug/L	SW846 8260B

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: AOK180499 Work Order #...: MAM2X1AA Matrix.....: WATER

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
4-Methyl-2-pentanone	ND	10	ug/L	SW846 8260B
(MIBK)				
Propionitrile	ND	4.0	ug/L	SW846 8260B
Styrene	ND	1.0	ug/L	SW846 8260B
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B
Toluene	ND	1.0	ug/L	SW846 8260B
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B
1,1,2-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Trichloroethene	ND	1.0	ug/L	SW846 8260B
Trichlorofluoromethane	ND	1.0	ug/L	SW846 8260B
1,2,3-Trichloropropane	ND	1.0	ug/L	SW846 8260B
Vinyl acetate	ND	2.0	ug/L	SW846 8260B
Vinyl chloride	ND	1.0	ug/L	SW846 8260B
Xylenes (total)	ND	2.0	ug/L	SW846 8260B
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	80	(75 - 1	21)	
1,2-Dichloroethane-d4	76	(63 - 1	29)	
Toluene-d8	88	(74 - 1)	15)	
4-Bromofluorobenzene	95	(66 - 1	17)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Environmental Resources Management Inc

Method Blank Report

GC/MS Volatiles

ug/L

Lot-Sample #: A0K300000-286 B Work	Order #: MA	M2X1AA	Matrix:	WATER
MASS SPECTROMETER/DATA SYSTEM (MSDS	3) TENTATIVEL	Y IDENTIFIED	COMPOUNDS	
DARAMETER	CAS #	ESTIMATED	RETENTION	IINTTS

None

GC/MS Volatiles

Client Lot #...: AOK180499 Work Order #...: MANTD1AA Matrix.....: WATER

MB Lot-Sample #: A0L010000-126

Prep Date...: 11/30/10
Analysis Date..: 11/30/10
Prep Batch #...: 0335126

Dilution Factor: 1

REPORTING

Acetone ND 10 ug/L SW846 8260B Acetonitrile ND 20 ug/L SW846 8260B Acrolein ND 20 ug/L SW846 8260B Acrylonitrile ND 20 ug/L SW846 8260B	
Acrolein ND 20 ug/L SW846 8260B	
-	
Agrylonitrilo ND 20 va/I GE046 0260D	
Acrylonitrile ND 20 ug/L SW846 8260B	
Allyl chloride ND 2.0 ug/L SW846 8260B	
Benzene ND 1.0 ug/L SW846 8260B	
Bromodichloromethane ND 1.0 ug/L SW846 8260B	
Bromoform ND 1.0 ug/L SW846 8260B	
Bromomethane ND 1.0 ug/L SW846 8260B	
2-Butanone (MEK) ND 10 ug/L SW846 8260B	
Carbon disulfide ND 1.0 ug/L SW846 8260B	
Carbon tetrachloride ND 1.0 ug/L SW846 8260B	
Chlorobenzene ND 1.0 ug/L SW846 8260B	
Chloroethane ND 1.0 ug/L SW846 8260B	
Chloroform ND 1.0 ug/L SW846 8260B	
Chloromethane ND 1.0 ug/L SW846 8260B	
Chloroprene ND 2.0 ug/L SW846 8260B	
Dibromochloromethane ND 1.0 ug/L SW846 8260B	
1,2-Dibromo-3-chloro- ND 2.0 ug/L SW846 8260B	
propane	
1,2-Dibromoethane (EDB) ND 1.0 ug/L SW846 8260B	
Dibromomethane ND 1.0 ug/L SW846 8260B	
trans-1,4-Dichloro- ND 1.0 ug/L SW846 8260B	
2-butene	
Dichlorodifluoromethane ND 1.0 ug/L SW846 8260B	
1,1-Dichloroethane ND 1.0 ug/L SW846 8260B	
1,2-Dichloroethane ND 1.0 ug/L SW846 8260B	
1,1-Dichloroethene ND 1.0 ug/L SW846 8260B	
trans-1,2-Dichloroethene ND 1.0 ug/L SW846 8260B	
1,2-Dichloropropane ND 1.0 ug/L SW846 8260B	
cis-1,3-Dichloropropene ND 1.0 ug/L SW846 8260B	
trans-1,3-Dichloropropene ND 1.0 ug/L SW846 8260B	
1,4-Dioxane ND 200 ug/L SW846 8260B	
Ethylbenzene ND 1.0 ug/L SW846 8260B	
Ethyl methacrylate ND 1.0 ug/L SW846 8260B	
2-Hexanone ND 10 ug/L SW846 8260B	
Iodomethane ND 1.0 ug/L SW846 8260B	
Isobutyl alcohol ND 50 ug/L SW846 8260B	
Methacrylonitrile ND 2.0 ug/L SW846 8260B	
Methylene chloride ND 1.0 ug/L SW846 8260B	
Methyl methacrylate ND 2.0 ug/L SW846 8260B	

GC/MS Volatiles

Client Lot #...: AOK180499 Work Order #...: MANTD1AA Matrix.....: WATER

		REPORTII	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
4-Methyl-2-pentanone	ND	10	ug/L	SW846 8260B
(MIBK)				
Propionitrile	ND	4.0	ug/L	SW846 8260B
Styrene	ND	1.0	ug/L	SW846 8260B
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B
Toluene	ND	1.0	ug/L	SW846 8260B
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B
1,1,2-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Trichloroethene	ND	1.0	ug/L	SW846 8260B
Trichlorofluoromethane	ND	1.0	ug/L	SW846 8260B
1,2,3-Trichloropropane	ND	1.0	ug/L	SW846 8260B
Vinyl acetate	ND	2.0	ug/L	SW846 8260B
Vinyl chloride	ND	1.0	ug/L	SW846 8260B
Xylenes (total)	ND	2.0	ug/L	SW846 8260B
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	90	(75 - 1	21)	
1,2-Dichloroethane-d4	82	(63 - 1	29)	
Toluene-d8	89	(74 - 13	15)	
4-Bromofluorobenzene	105	(66 - 1	17)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Environmental Resources Management Inc

Method Blank Report

GC/MS Volatiles

Lot-Sample #: A0L010000-126 B Work	Order #: MAI	NTD1AA	Matrix:	WATER
MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVEL	Y IDENTIFIED	COMPOUNDS	
<u>PARAMETER</u> None	CAS #	ESTIMATED RESULT	RETENTION TIME	<u>UNITS</u> ug/L

GC/MS Semivolatiles

Client Lot #...: AOK180499 Work Order #...: MADNA1AA Matrix.....: WATER

MB Lot-Sample #: A0K210000-050

Prep Date...: 11/22/10
Analysis Date..: 12/01/10
Prep Batch #...: 0325050

Dilution Factor: 1

2,6-Dinitrotoluene

3-Nitroaniline

Acenaphthene

REPORTING PARAMETER RESULT LIMIT UNITS METHOD Phenol 1.0 SW846 8270C ND ug/L bis(2-Chloroethyl)-ND 1.0 uq/L SW846 8270C ether 2-Chlorophenol ND 1.0 SW846 8270C uq/L 1.0 1,3-Dichlorobenzene ND uq/L SW846 8270C 1,4-Dichlorobenzene 1.0 SW846 8270C ND ug/L 1,2-Dichlorobenzene ND 1.0 ug/L SW846 8270C 1.0 2-Methylphenol ND ug/L SW846 8270C 2,2'-oxybis(1-Chloro-1.0 SW846 8270C ND ug/L propane) 4-Methylphenol 1.0 SW846 8270C ND uq/L N-Nitrosodi-n-propyl-ND 1.0 uq/L SW846 8270C amine Hexachloroethane ND 1.0 SW846 8270C ug/L Nitrobenzene ND 1.0 SW846 8270C ug/L Isophorone ND 1.0 uq/L SW846 8270C 2-Nitrophenol 2.0 SW846 8270C ND uq/L 2,4-Dimethylphenol ND 2.0 uq/L SW846 8270C bis(2-Chloroethoxy) ND 1.0 SW846 8270C ug/L methane ND 2.0 SW846 8270C 2,4-Dichlorophenol ug/L 1,2,4-Trichloro-SW846 8270C ND 1.0 ug/L benzene Naphthalene ND 0.20 uq/L SW846 8270C 2.0 4-Chloroaniline ND SW846 8270C uq/L Hexachlorobutadiene ND 1.0 SW846 8270C ug/L 2.0 4-Chloro-3-methylphenol ND uq/L SW846 8270C 2-Methylnaphthalene ND 0.20 SW846 8270C ug/L Hexachlorocyclopenta-ND 10 ug/L SW846 8270C diene 2,4,6-Trichloro-ND 5.0 SW846 8270C uq/L phenol 2,4,5-Trichloro-ND 5.0 ug/L SW846 8270C phenol 2-Chloronaphthalene ND 1.0 uq/L SW846 8270C 2-Nitroaniline 2.0 SW846 8270C ND ug/L Dimethyl phthalate ND 1.0 SW846 8270C ug/L Acenaphthylene ND0.20 uq/L SW846 8270C

(Continued on next page)

ND

ND

ND

5.0

2.0

0.20

uq/L

ug/L

ug/L

SW846 8270C

SW846 8270C

SW846 8270C

GC/MS Semivolatiles

Client Lot #...: A0K180499 Work Order #...: MADNA1AA Matrix.....: WATER

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,4-Dinitrophenol	ND	5.0	ug/L	SW846 8270C
4-Nitrophenol	ND	5.0	ug/L	SW846 8270C
Dibenzofuran	ND	1.0	ug/L	SW846 8270C
2,4-Dinitrotoluene	ND	5.0	ug/L	SW846 8270C
Diethyl phthalate	ND	1.0	ug/L	SW846 8270C
4-Chlorophenyl phenyl	ND	2.0	ug/L	SW846 8270C
ether				
Fluorene	ND	0.20	ug/L	SW846 8270C
4-Nitroaniline	ND	2.0	ug/L	SW846 8270C
4,6-Dinitro-	ND	5.0	ug/L	SW846 8270C
2-methylphenol				
N-Nitrosodiphenylamine	ND	1.0	ug/L	SW846 8270C
4-Bromophenyl phenyl ether	ND	2.0	ug/L	SW846 8270C
Hexachlorobenzene	ND	0.20	ug/L	SW846 8270C
Pentachlorophenol	ND	5.0	ug/L	SW846 8270C
Phenanthrene	ND	0.20	ug/L	SW846 8270C
Anthracene	ND	0.20	ug/L	SW846 8270C
Carbazole	ND	1.0	ug/L	SW846 8270C
Di-n-butyl phthalate	ND	1.0	ug/L	SW846 8270C
Fluoranthene	ND	0.20	ug/L	SW846 8270C
Pyrene	ND	0.20	ug/L	SW846 8270C
Butyl benzyl phthalate	ND	1.0	ug/L	SW846 8270C
3,3'-Dichlorobenzidine	ND	5.0	ug/L ug/L	SW846 8270C
Benzo(a)anthracene	ND	0.20	ug/L ug/L	SW846 8270C
Chrysene	ND 1.2 J	0.20 2.0	ug/L	SW846 8270C SW846 8270C
<pre>bis(2-Ethylhexyl) phthalate</pre>	1.2 0	2.0	ug/L	SW040 02/UC
Di-n-octyl phthalate	ND	1.0	ug/L	SW846 8270C
Benzo(b)fluoranthene	ND	0.20	ug/L	SW846 8270C
Benzo(k)fluoranthene	ND	0.20	ug/L	SW846 8270C
Benzo(a)pyrene	ND	0.20	ug/L	SW846 8270C
Indeno(1,2,3-cd)pyrene	ND	0.20	ug/L	SW846 8270C
Dibenz(a,h)anthracene	ND	0.20	ug/L	SW846 8270C
Benzo(ghi)perylene	ND	0.20	ug/L	SW846 8270C
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	_	
Nitrobenzene-d5	48	(27 - 111)	
2-Fluorobiphenyl	55	(28 - 110)	
Terphenyl-d14	85	(37 - 119)	
Phenol-d5	49	(10 - 110		
2-Fluorophenol	33	(10 - 110		
2,4,6-Tribromophenol	61	(22 - 120)	

GC/MS Semivolatiles

Client Lot #...: AOK180499 Work Order #...: MADNA1AA Matrix.....: WATER

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

J Estimated result. Result is less than RL.

Environmental Resources Management Inc

Method Blank Report

GC/MS Semivolatiles

Lot-Sample #: A0K210000-050 B Work Order #: MADNA1AA Matrix: WATER

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

NOTE(S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

TOTAL Metals

Client Lot #...: AOK180499 Matrix.....: WATER

PARAMETER	RESULT	REPORTING LIMIT		METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #			
	MB Lot-Sample #: A0K190000-019 Prep Batch #: 0323019								
Arsenic	ND	10.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/19-11/23/10	L99M71AA			
Lead	ND	3.0 Dilution Factor		SW846 6010B	11/19-11/23/10	L99M71AC			
Selenium	ND	5.0 Dilution Facto		SW846 6010B	11/19-11/23/10	L99M71AD			
Thallium	6.4 B	10.0 Dilution Facto		SW846 6010B	11/19-11/23/10	L99M71AE			
Antimony	ND	60.0 Dilution Factor		SW846 6010B	11/19-11/23/10	L99M71AF			
Beryllium	ND	5.0 Dilution Factor	_	SW846 6010B	11/19-11/23/10	L99M71AG			
Cadmium	ND	5.0 Dilution Factor	_	SW846 6010B	11/19-11/23/10	L99M71AH			
Chromium	ND	10.0 Dilution Factor	_	SW846 6010B	11/19-11/23/10	L99M71AJ			
Copper	ND	25.0 Dilution Factor	_	SW846 6010B	11/19-11/23/10	L99M71AK			
Nickel	ND	40.0 Dilution Factor	_	SW846 6010B	11/19-11/23/10	L99M71AL			
Silver	ND	10.0 Dilution Factor	_	SW846 6010B	11/19-11/23/10	L99M71AM			
Zinc	ND	20.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/19-11/23/10	L99M71AN			
Mercury	ND	0.20 Dilution Factor	ug/L or: 1	SW846 7470A	11/19-11/22/10	L99M71AP			
NOTE(S):									

 $\label{lem:calculations} \textbf{Calculations} \ \text{are performed before rounding to avoid round-off errors in calculated results}.$

B Estimated result. Result is less than RL.

DISSOLVED Metals

Client Lot #...: AOK180499 Matrix.....: WATER

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	
MB Lot-Sample Arsenic	#: A0K190000- ND	019 Prep Bate 10.0	ug/L	323019 SW846 6010B	11/19-11/23/10	L99M71A6
Lead	ND	3.0 Dilution Factor	_	SW846 6010B	11/19-11/23/10	L99M71A7
Selenium	ND	5.0 n	_	SW846 6010B	11/19-11/23/10	L99M71A8
Thallium	6.4 B	10.0 n	_	SW846 6010B	11/19-11/23/10	L99M71A9
Antimony	ND	60.0 To Dilution Factor	_	SW846 6010B	11/19-11/23/10	L99M71CA
Beryllium	ND	5.0 To Dilution Factor	_	SW846 6010B	11/19-11/23/10	L99M71CC
Cadmium	ND	5.0 To Dilution Factor	_	SW846 6010B	11/19-11/23/10	L99M71CD
Chromium	ND	10.0 n	_	SW846 6010B	11/19-11/23/10	L99M71CE
Copper	ND	25.0 Dilution Factor	_	SW846 6010B	11/19-11/23/10	L99M71CF
Nickel	ND	40.0 Dilution Factor	_	SW846 6010B	11/19-11/23/10	L99M71CG
Silver	ND	10.0 Dilution Factor		SW846 6010B	11/19-11/23/10	L99M71CH
Zinc	ND	20.0 n	ug/L : 1	SW846 6010B	11/19-11/23/10	L99M71CJ
Mercury	ND	0.20 n	ug/L :: 1	SW846 7470A	11/19-11/22/10	L99M71CK
NOTE(S):						

 $\label{lem:calculations} \textbf{Calculations} \ \text{are performed before rounding to avoid round-off errors in calculated results}.$

B Estimated result. Result is less than RL.

GC/MS Volatiles

Client Lot #...: A0K180499 Work Order #...: MAM2X1AC-LCS Matrix.....: WATER

LCS Lot-Sample#: A0K300000-286 MAM2X1AD-LCSD

Prep Batch #...: 0334286

Dilution Factor: 1

	PERCENT	RECOVERY	RPD	
PARAMETER	RECOVERY	LIMITS	RPD LIMITS	METHOD
Benzene	94	(83 - 112)		SW846 8260B
	94	(83 - 112)	0.18 (0-30)	SW846 8260B
Chlorobenzene	93	(85 - 110)		SW846 8260B
	94	(85 - 110)	0.49 (0-30)	SW846 8260B
1,1-Dichloroethene	93	(78 - 131)		SW846 8260B
	96	(78 - 131)	3.9 (0-30)	SW846 8260B
Toluene	91	(84 - 111)		SW846 8260B
	91	(84 - 111)	0.67 (0-30)	SW846 8260B
Trichloroethene	91	(76 - 117)		SW846 8260B
	92	(76 - 117)	0.93 (0-20)	SW846 8260B
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
Dibromofluoromethane		87	(75 - 121)	
		90	(75 - 121)	
1,2-Dichloroethane-d4		78	(63 - 129)	
		82	(63 - 129)	
Toluene-d8		92	(74 - 115)	
		91	(74 - 115)	
4-Bromofluorobenzene		108	(66 - 117)	
		110	(66 - 117)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

GC/MS Volatiles

Client Lot #...: A0K180499 Work Order #...: MANTD1AC-LCS Matrix.....: WATER

LCS Lot-Sample#: A0L010000-126 MANTD1AD-LCSD

Prep Batch #...: 0335126

Dilution Factor: 1

	PERCENT	RECOVERY	F	RPD	
PARAMETER	RECOVERY	LIMITS	RPD I	LIMITS	METHOD
Benzene	102	(83 - 112)			SW846 8260B
	99	(83 - 112)	2.9 ((0-30)	SW846 8260B
Chlorobenzene	100	(85 - 110)			SW846 8260B
	97	(85 - 110)	2.6 ((0-30)	SW846 8260B
1,1-Dichloroethene	106	(78 - 131)			SW846 8260B
	105	(78 - 131)	1.0 ((0-30)	SW846 8260B
Toluene	99	(84 - 111)			SW846 8260B
	97	(84 - 111)	1.5 ((0-30)	SW846 8260B
Trichloroethene	98	(76 - 117)			SW846 8260B
	97	(76 - 117)	0.51 ((0-20)	SW846 8260B
		PERCENT	RECOVER	RY	
SURROGATE		RECOVERY	LIMITS		
Dibromofluoromethane		92	(75 - 1	L21)	
		92	(75 - 1	L21)	
1,2-Dichloroethane-d4		85	(63 - 1	L29)	
		84	(63 - 1	L29)	
Toluene-d8		93	(74 - 1	L15)	
		94	(74 - 1	L15)	
4-Bromofluorobenzene		110	(66 - 1	L17)	
		109	(66 - 1	L17)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

GC/MS Semivolatiles

Client Lot #...: AOK180499 Work Order #...: MADNA1AC-LCS Matrix.....: WATER

LCS Lot-Sample#: A0K210000-050 MADNA1AD-LCSD

Prep Batch #...: 0325050

Dilution Factor: 1

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	<u>LIMITS</u>	METHOD
Phenol	71	(14 - 112)			SW846 8270C
	72	(14 - 112)	0.39	(0-30)	SW846 8270C
2-Chlorophenol	70	(27 - 110)			SW846 8270C
	69	(27 - 110)	1.2	(0-30)	SW846 8270C
1,4-Dichlorobenzene	64	(19 - 110)			SW846 8270C
	63	(19 - 110)	1.9	(0-30)	SW846 8270C
N-Nitrosodi-n-propyl- amine	75	(37 - 121)			SW846 8270C
	75	(37 - 121)	0.16	(0-30)	SW846 8270C
1,2,4-Trichloro- benzene	65	(25 - 110)			SW846 8270C
	64	(25 - 110)	1.8	(0-30)	SW846 8270C
4-Chloro-3-methylphenol	76	(39 - 110)			SW846 8270C
	76	(39 - 110)	1.0	(0-30)	SW846 8270C
Acenaphthene	76	(40 - 110)			SW846 8270C
	75	(40 - 110)	0.71	(0-30)	SW846 8270C
4-Nitrophenol	77	(12 - 130)			SW846 8270C
	74	(12 - 130)	3.2	(0-30)	SW846 8270C
2,4-Dinitrotoluene	85	(52 - 123)			SW846 8270C
	85	(52 - 123)	0.46	(0-30)	SW846 8270C
Pentachlorophenol	68	(26 - 110)			SW846 8270C
	69	(26 - 110)	1.7	(0-30)	SW846 8270C
Pyrene	79	(55 - 120)			SW846 8270C
	78	(55 - 120)	1.0	(0-30)	SW846 8270C
		PERCENT	RECOV	ERY	
SURROGATE		RECOVERY	LIMIT	<u>S</u>	
Nitrobenzene-d5		70	(27 -	111)	
		71	(27 -		
2-Fluorobiphenyl		73	(28 -	110)	
		75	(28 -		
Terphenyl-d14		92	(37 -		
		92	(37 -	119)	
Phenol-d5		69	(10 -		
		70	(10 -		
2-Fluorophenol		53	(10 -		
		51	(10 -		
2,4,6-Tribromophenol		83	(22 -	120)	

GC/MS Semivolatiles

Client Lot #...: AOK180499 Work Order #...: MADNA1AC-LCS Matrix.....: WATER

LCS Lot-Sample#: A0K210000-050 MADNA1AD-LCSD

PERCENT RECOVERY

<u>SURROGATE</u> <u>RECOVERY</u> <u>LIMITS</u>

82 (22 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

TOTAL Metals

Client Lot #...: AOK180499 Matrix.....: WATER

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
LCS Lot-Sample#: Arsenic		_	tch #: 0323019 SW846 6010B or: 1	11/19-11/23/10	L99M71AQ
Lead	97	(80 - 120) Dilution Facto	SW846 6010B	11/19-11/23/10	L99M71AR
Selenium	97	(80 - 120) Dilution Facto	SW846 6010B	11/19-11/23/10	L99M71AT
Thallium	88	(80 - 120) Dilution Factor	SW846 6010B	11/19-11/23/10	L99M71AU
Antimony	96	(80 - 120) Dilution Factor	SW846 6010B	11/19-11/23/10	L99M71AV
Beryllium	96	(80 - 120) Dilution Facto	SW846 6010B	11/19-11/23/10	L99M71AW
Cadmium	95	(80 - 120) Dilution Factor	SW846 6010B	11/19-11/23/10	L99M71AX
Chromium	93	(80 - 120) Dilution Factor	SW846 6010B	11/19-11/23/10	L99M71A0
Copper	91	(80 - 120) Dilution Factor	SW846 6010B	11/19-11/23/10	L99M71A1
Nickel	99	(80 - 120) Dilution Factor	SW846 6010B	11/19-11/23/10	L99M71A2
Silver	92	(80 - 120) Dilution Factor	SW846 6010B	11/19-11/23/10	L99M71A3
Zinc	99	(80 - 120) Dilution Factor	SW846 6010B	11/19-11/23/10	L99M71A4
Mercury	96	(81 - 123) Dilution Facto	SW846 7470A or: 1	11/19-11/22/10	L99M71A5

NOTE(S):

 $\label{lem:calculations} \textbf{Calculations} \ \text{are performed before rounding to avoid round-off errors in calculated results}.$

DISSOLVED Metals

Client Lot #...: AOK180499 Matrix.....: WATER

<u>PARAMETER</u>	PERCENT RECOVERY	RECOVERY LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
LCS Lot-Sample#: Arsenic	A0K190000- 100	_	tch #: 0323019 SW846 6010B or: 1	11/19-11/23/10	L99M71CL
Lead	97	(80 - 120) Dilution Facto	SW846 6010B	11/19-11/23/10	L99M71CM
Selenium	97	(80 - 120) Dilution Factor	SW846 6010B	11/19-11/23/10	L99M71CN
Thallium	88	(80 - 120) Dilution Facto	SW846 6010B	11/19-11/23/10	L99M71CP
Antimony	96	(80 - 120) Dilution Factor	SW846 6010B	11/19-11/23/10	L99M71CQ
Beryllium	96	(80 - 120) Dilution Facto	SW846 6010B	11/19-11/23/10	L99M71CR
Cadmium	95	(80 - 120) Dilution Facto	SW846 6010B	11/19-11/23/10	L99M71CT
Chromium	93	(80 - 120) Dilution Facto	SW846 6010B	11/19-11/23/10	L99M71CU
Copper	91	(80 - 120) Dilution Facto	SW846 6010B	11/19-11/23/10	L99M71CV
Nickel	99	(80 - 120) Dilution Facto	SW846 6010B	11/19-11/23/10	L99M71CW
Silver	92	(80 - 120) Dilution Facto	SW846 6010B	11/19-11/23/10	L99M71CX
Zinc	99	(80 - 120) Dilution Factor	SW846 6010B	11/19-11/23/10	L99M71C0
Mercury	96	(81 - 123) Dilution Facto	SW846 7470A	11/19-11/22/10	L99M71C1

NOTE(S):

 $\label{lem:calculations} \textbf{Calculations} \ \text{are performed before rounding to avoid round-off errors in calculated results}.$

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: A0K180499 Work Order #...: L98QQ1AC-MS Matrix.....: WATER

Date Sampled...: 11/16/10 13:50 Date Received..: 11/18/10
Prep Date....: 11/30/10 Analysis Date..: 11/30/10

Prep Batch #...: 0335126

Dilution Factor: 1

	PERCENT	RECOVERY		RPD		
PARAMETER	RECOVERY	LIMITS	<u>RPD</u>	LIMITS	METHOI)
Benzene	98	(72 - 121)			SW846	8260B
	97	(72 - 121)	0.79	(0-30)	SW846	8260B
Chlorobenzene	96	(80 - 110)			SW846	8260B
	94	(80 - 110)	2.4	(0-30)	SW846	8260B
1,1-Dichloroethene	103	(74 - 135)			SW846	8260B
	104	(74 - 135)	1.1	(0-30)	SW846	8260B
Toluene	96	(78 - 114)			SW846	8260B
	95	(78 - 114)	0.92	(0-30)	SW846	8260B
Trichloroethene	96	(66 - 120)			SW846	8260B
	96	(66 - 120)	0.14	(0-30)	SW846	8260B
		PERCENT		RECOVERY		
SURROGATE	-	<u>RECOVERY</u>		LIMITS	_	
Dibromofluoromethane		92		(75 - 121)	
		91		(75 - 121)	
1,2-Dichloroethane-d4		80		(63 - 129)	
		82		(63 - 129)	
Toluene-d8		93		(74 - 115)	
		91		(74 - 115)	
4-Bromofluorobenzene		110		(66 - 117)	
		108		(66 - 117)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Date Sampled...: 11/16/10 08:15 Date Received..: 11/18/10

PARAMETER	PERCENT RECOVERY	RECOVERY RPD LIMITS RPD LIMITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
MS Lot-Sampl	e #: A0K18	0499-001 Prep Batch #. .	: 0323019	
Arsenic	112	(75 - 125)	SW846 6010B	11/19-11/23/10 L98J01A8
	111	(75 - 125) 0.56 (0-20)	SW846 6010B	11/19-11/23/10 L98J01A9
		Dilution Factor: 1		
Lead	104	(75 - 125)	SW846 6010B	11/19-11/23/10 L98J01CA
Lead	104	(75 - 125) 0.69 (0-20)		11/19-11/23/10 L98J01CC
		Dilution Factor: 1		
Selenium	109	(75 - 125)	SW846 6010B	11/19-11/23/10 L98J01CD
Serenram	109	(75 - 125) $(75 - 125)$ 1.1 $(0-20)$		11/19-11/23/10 L98J01CE
	100	Dilution Factor: 1	5W010 0010B	11,15 11,23,10 15,000101
Thallium	97	(75 - 125)	SW846 6010B	11/19-11/23/10 L98J01CF
	96	(75 - 125) 0.38 (0-20) Dilution Factor: 1	SW846 6010B	11/19-11/23/10 L98J01CG
		Dilution Factor: 1		
Antimony	108	(75 - 125)	SW846 6010B	11/19-11/23/10 L98J01CH
	108	(75 - 125) 0.17 (0-20)	SW846 6010B	11/19-11/23/10 L98J01CJ
		Dilution Factor: 1		
Beryllium	103	(75 - 125)	SW846 6010B	11/19-11/23/10 L98J01CK
	103	(75 - 125) 0.40 (0-20)	SW846 6010B	11/19-11/23/10 L98J01CL
		Dilution Factor: 1		
Cadmium	101	(75 - 125)	SW846 6010B	11/19-11/23/10 L98J01CM
CadillIulli	101	(75 - 125) $(75 - 125)$ 0.40 $(0-20)$	SW846 6010B	11/19-11/23/10 L98J01CM
	102	Dilution Factor: 1	5W010 0010B	11,15 11,23,10 15,00 0101
Chromium	100	(75 - 125)	SW846 6010B	11/19-11/23/10 L98J01CP
	100	(75 - 125) 0.11 (0-20) Dilution Factor: 1	SW846 6010B	11/19-11/23/10 L98J01CQ
		Dilucion Factor: 1		
Copper	104	(75 - 125)	SW846 6010B	11/19-11/23/10 L98J01CR
	104	(75 - 125) 0.13 (0-20)	SW846 6010B	11/19-11/23/10 L98J01CT
		Dilution Factor: 1		
Nickel	105	(75 - 125)	SW846 6010B	11/19-11/23/10 L98J01CU
	105	(75 - 125) 0.28 (0-20)	SW846 6010B	11/19-11/23/10 L98J01CV
		Dilution Factor: 1		

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Date Sampled...: 11/16/10 08:15 Date Received..: 11/18/10

	PERCENT	RECOVERY	RPD		PREPARATION-	WORK
PARAMETER	RECOVERY	LIMITS RPD	LIMITS	METHOD	ANALYSIS DATE	ORDER #
Silver	105	(75 - 125)		SW846 6010B	11/19-11/23/10	L98J01CW
	104	(75 - 125) 0.98	(0-20)	SW846 6010B	11/19-11/23/10	L98J01CX
		Dilution Fac	tor: 1			
Zinc	110	(75 - 125)		SW846 6010B	11/19-11/23/10	L98J01C0
	109	(75 - 125) 1.1	(0-20)	SW846 6010B	11/19-11/23/10	L98J01C1
		Dilution Fac	tor: 1			
Mercury	88	(69 - 134)		SW846 7470A	11/19-11/22/10	L98J01C2
-	94	(69 - 134) 6.4	(0-20)	SW846 7470A	11/19-11/22/10	L98J01C3
		Dilution Fac	tor: 1			

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Chain of Custody Record

TestAmerica Laboratory location:

THE LEADER IN ENVIRONMENTAL TESTING TestAmerica

SO775 BAINBLIDGE RA STE KO Special Instructions/QC Requirements & Comments: elinquished by Company Name: 140 543 0.750 oject Number: Socor 04 44/39 Possible Hazard Identification MW-12 HQUIPMENT BURNS # 1 MW C MW-13 DUPLICATE Non-Hazard MW- 11 3W -13 Mw-14 TREINERS MW- 18 ₹ - 30 0 FRM 3 Coolers Sample Identification ☐ Flammable LAGOON Skin Irritant ERN. 11/4/10 /S/O 0(七)二 W/110 1150 11/11/6 18 60 outers 18 N/16/10 1115 0540-245-046 Company Method of Shipment/Carrier Client Project Manager: 11/16/10 0953 11/17/10 1600 Sample Date Sarah. word@erm.com 11/16/10 0815 DARAH WOOD Regulatory program: Poison B 0959 277 Sample Time 1320 Date/Time Date/Time Date/Time NorTH Unknown Solid NPDES RCRA Site Contac Approve Ü eturn to Client W لں Isposal (A fee may be assessed if samples are retained longer than I month)
telturn to Client Disposal By Lab Archive For V V PRESERVY Ŵ HCI 403-6773 Received by:

UPS Received in Laboratory by: NaOH 3 weeks 1 week 2 days 2 weeks ZnAc NaOH Unpres Other $\overline{\times}$ × × VOCS XXXX XXXX Lab Contact: SOLVED METAL Company Company Months TestAmerica Laboratories, Inc.
COC No: Date/Time Date/Time: 11-18-10 1000 Sample Specific Notes / Special Instructions: of | COCs

- Tr

TestAmerica Cooler	Receipt Form/Narrative Lot Number	: AOK 180	> 499
North Canton Facilit			
Client Eem	Project By:	114	
Cooler Received on	1-18:10 Opened on 11:18:10	(Signature	
FedEx UPS DHL	☐ FAS ☐ Stetson ☐ Client Drop Off ☐ TestAmerica Courier	U Other	
TestAmerica Cooler#	Multiple Coolers 🛣 Foam Box 🔲 Client Cooler	Other	
1. Were custody seals or	n the outside of the cooler(s)? Yes 🔎 No 🗌 Intact? Yes 🛭	No □ NA	· 🔲 .
If YES, Quantity	Quantity Unsalvageable		
Were custody seals or	n the outside of cooler(s) signed and dated?		
Were custody seals or	n the bottle(s)?	□ No 🗗	
If YES, are there any	exceptions?		
2. Shippers' packing slip	attached to the cooler(s)?	☑ No 🔲	
3. Did custody papers ac	company the sample(s)? Yes No 🗌 Relinquish	ed by client? Ye	es 🖊 No 🗌
4. Were the custody pap	ers signed in the appropriate place?	No □	
5. Packing material used	l: Bubble Wrap ☑ Foam ☑ None ☐ Other		
6 Cooler temperature un	oon receipt°C See back of form for multiple cool	ers/temps	
	Other		
	ce Blue Ice Dry Ice Water None		
) ·	•	No □	
	be reconciled with the COC?	7 No □	
9. Were sample(s) at the	_	No □ NA	\
		₹ No □	_
11. Were air bubbles >6 n			
	· · · · · · · · · · · · · · · · · · ·	No □	` 🗀
	ent in the cooler(s)? Yes \(\overline{\sigma}\) No \(\overline{\sigma}\) Were VOAs on the COC		
	Date by via Verbal		
Concerning	Date by via verbui	voice ividii [
14. CHAIN OF CUSTOD			
The following discrepance		and the second second second second	
The following discrepance	55 Coodifica.		
15. SAMPLE CONDITION			
		d halding time h	ad avalend
Sample(s)	were received after the recommended		
Sample(s)		ved in a broken	
Sample(s)	were received with bubble >6 m	m in diameter.	(Notity PM)
16. SAMPLE PRESERVA			
Sample(s)	were further pre		
	mended pH level(s). Nitric Acid Lot# 051010-HNO3; Sulfuric Acid Lot#		
	OH; Hydrochloric Acid Lot# 092006-HCl; Sodium Hydroxide and Zinc Ace	etate Lot# 100108	3 -
	at time was preservative added to sample(s)?	T	
Client ID	<u>pH</u>	<u>Date</u>	<u>Initials</u>
(6)	62 12	11-18,10	19
14	12 17		
15	12 2	-	——
13	12 12	 	
13D	27 LZ		
9	<2 ¹ Z		
11	cz 'Z	 	
/	12 12		l 1.

n Canton Facil	ity <u>pH</u>	<u>Date</u>	<u>Initials</u>
Client ID	<u>pii</u>	(1.1511)	15
U B	42.42		
		+	
		 	
		1	
		1	
		\	
		5.0 - 40- p. el	Coole
Cooler #	Temp. °C	Method	Coola
13183	2.0	IP	10,9
1/10-3	2.0		
A163 4102	1.6		1
7102			
			
			1
			
crepancies Cont'd:			

END OF REPORT

ANALYTICAL REPORT

GRIENER'S LAGOON

Lot #: A0K220421

Sarah Gregg

ERM Inc 30775 Bainbridge Road Suite 180 Solon, OH 44139

TESTAMERICA LABORATORIES, INC.

Patrick J. O'Meara Project Manager

December 15, 2010

CASE NARRATIVE

A0K220421

The following report contains the analytical results for ten water samples and one quality control sample submitted to TestAmerica North Canton by ERM Inc. from the GRIENER'S LAGOON Site. The samples were received November 20, 2010, according to documented sample acceptance procedures.

TestAmerica utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. Preliminary results were provided to Sarah Gregg on December 14, 2010. A summary of QC data for these analyses is included at the back of the report.

TestAmerica North Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

All parameters were evaluated to the method detection limit and include qualified results where applicable.

Please refer to the Quality Control Elements Narrative following this case narrative for additional quality control information.

If you have any questions, please call the Project Manager, Patrick J. O'Meara, at 330-497-9396.

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT."

CASE NARRATIVE (continued)

SUPPLEMENTAL QC INFORMATION

SAMPLE RECEIVING

The temperatures of the coolers upon sample receipt were 1.4, 2.8, 3.2, and 3.3°C.

GC/MS VOLATILES

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

The pH of the sample(s) MW-5 was greater than 2. The sample was analyzed within the normal 14 day holding time; however, experimental evidence suggests that some aromatic compounds in wastewater samples, notably, Benzene, Toluene, and Ethylbenzene are susceptible to biological degradation if samples are not preserved to a pH of 2.

GC/MS SEMIVOLATILES

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "B". All target analytes in the Method Blank must be below the reporting limit (RL) or the associated sample(s) must be ND with the exception of common laboratory contaminants.

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

There were no client requested Matrix Spike/Matrix Spike Duplicate (MS/MSD) samples in batch(es) 0328322 and 0343044. Therefore, the laboratory has included a Laboratory Control Sample Duplicate (LCSD) in the QC batch. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system.

CASE NARRATIVE (continued)

GC/MS SEMIVOLATILES (continued)

Surrogate recovery is out in sample(s) MW-1 DUPLICATE. Reextraction and/or reanalysis performed in accordance with exceeded criteria corrective action required by QAPjP. Reextraction and/or reanalysis resulted in all surrogate recoveries within QC limits, but the reextraction was performed outside of holding time. Both sets of data are reported.

The internal standard areas were outside acceptance limits for sample(s) MW-6 due to matrix effects. (Refer to IS report following this Case Narrative for additional detail.)

Sample(s) MW-7, MW-6, MW-4, MW-8, and MW-5 had elevated reporting limits due to matrix interferences

Batch(es) 0328322 had RPDs outside QC criteria in the LCS/LCSD, but recoveries were within QC criteria; therefore, no corrective action was required.

METALS

The sample(s) that contain results between the MDL and the RL were flagged with "B". There is the possibility of false positive or mis-identification at these quantitation levels. The acceptance criteria for the ICB, CCB, and Method Blank are +/- the standard reporting limit (SRL).

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "J". Refer to the sample report pages for the affected analyte(s).

QUALITY CONTROL ELEMENTS NARRATIVE

TestAmerica conducts a quality assurance/quality control (QA/QC) program designed to provide scientifically valid and legally defensible data. Toward this end, several types of quality control indicators are incorporated into the QA/QC program, which is described in detail in QA Policy, QA-003. These indicators are introduced into the sample testing process to provide a mechanism for the assessment of the analytical data. Program or agency specific requirements take precedence over the requirements listed in this narrative.

OC BATCH

Environmental samples are taken through the testing process in groups called QUALITY CONTROL BATCHES (QC batches). A QC batch contains up to twenty environmental samples of a similar matrix (water, soil) that are processed using the same reagents and standards. TestAmerica North Canton requires that each environmental sample be associated with a QC batch.

Several quality control samples are included in each QC batch and are processed identically to the twenty environmental samples.

For SW846/RCRA methods, QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) pair or a MATRIX SPIKE/SAMPLE DUPLICATE (MS/DU) pair. If there is insufficient sample to perform an MS/MSD or an MS/DU, then a LABORATORY CONTROL SAMPLE DUPLICATE (LCSD) is included in the QC batch.

For 600 series/CWA methods, QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE (MS). An MS is prepared and analyzed at a 10% frequency for GC Methods and at a 5% frequency for GC/MS methods.

LABORATORY CONTROL SAMPLE

The Laboratory Control Sample is a QC sample that is created by adding known concentrations of a full or partial set of target analytes to a matrix similar to that of the environmental samples in the QC batch. Multi peak responders may not be included in the target spike list due to co-elution. The LCS analyte recovery results are used to monitor the analytical process and provide evidence that the laboratory is performing the method within acceptable guidelines. All control analytes indicated by a bold type in the LCS must meet acceptance criteria. Failure to meet the established recovery guidelines requires the repreparation and reanalysis of all samples in the QC batch. Comparison of only the failed parameters from the first batch are evaluated. The only exception to the rework requirement is that if the LCS recoveries are biased high and the associated sample is ND (non-detected) for the parameter(s) of interest, the batch is acceptable.

At times, a Laboratory Control Sample Duplicate (LCSD) is also included in the QC batch. An LCSD is a QC sample that is created and handled identically to the LCS. Analyte recovery data from the LCSD is assessed in the same way as that of the LCS. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system. Precision data are expressed as relative percent differences (RPDs). If the RPD fails for an LCS/LCSD and yet the recoveries are within acceptance criteria, the batch is still acceptable.

METHOD BLANK

The Method Blank is a QC sample consisting of all the reagents used in analyzing the environmental samples contained in the QC batch. Method Blank results are used to determine if interference or contamination in the analytical system could lead to the reporting of false positive data or elevated analyte concentrations. All target analytes must be below the reporting limits (RL) or the associated sample(s) must be ND except under the following circumstances:

• Common organic contaminants may be present at concentrations up to 5 times the reporting limits. Common metals contaminants may be present at concentrations up to 2 times the reporting limit, or the reported blank concentration must be twenty fold less than the concentration reported in the associated environmental samples. (See common laboratory contaminants listed in the table.)

Volatile (GC or GC/MS)	Semivolatile (GC/MS)	Metals ICP-MS	Metals ICP Trace
Methylene Chloride,	Phthalate Esters	Copper, Iron, Zinc,	Copper, Iron, Zinc, Lead
Acetone, 2-Butanone		Lead, Calcium,	
		Magnesium, Potassium,	
		Sodium, Barium,	
		Chromium, Manganese	

QUALITY CONTROL ELEMENTS NARRATIVE (continued)

- Organic blanks will be accepted if compounds detected in the blank are present in the associated samples at levels 10 times the blank level. Inorganic blanks will be accepted if elements detected in the blank are present in the associated samples at 20 times the blank level.
- Blanks will be accepted if the compounds/elements detected are not present in any of the associated environmental samples.

Failure to meet these Method Blank criteria requires the repreparation and reanalysis of all samples in the QC batch.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

A Matrix Spike and a Matrix Spike Duplicate are a pair of environmental samples to which known concentrations of a full or partial set of target analytes are added. The MS/MSD results are determined in the same manner as the results of the environmental sample used to prepare the MS/MSD. The analyte recoveries and the relative percent differences (RPDs) of the recoveries are calculated and used to evaluate the effect of the sample matrix on the analytical results. Due to the potential variability of the matrix of each sample, the MS/MSD results may not have an immediate bearing on any samples except the one spiked; therefore, the associated batch MS/MSD may not reflect the same compounds as the samples contained in the analytical report. When these MS/MSD results fail to meet acceptance criteria, the data is evaluated. If the LCS is within acceptance criteria, the batch is considered acceptable.

For certain methods, a Matrix Spike/Sample Duplicate (MS/DU) may be included in the QC batch in place of the MS/MSD. For the parameters (i.e. pH, ignitability) where it is not possible to prepare a spiked sample, a Sample Duplicate may be included in the QC batch. However, a Sample Duplicate is less likely to provide usable precision statistics depending on the likelihood of finding concentrations below the standard reporting limit. When the Sample Duplicate result fails to meet acceptance criteria, the data is evaluated.

For certain methods (600 series methods/CWA), a Matrix Spike is required in place of a Matrix Spike/Matrix Spike Duplicate (MS/MSD) or Matrix Spike/Sample Duplicate (MS/DU).

The acceptance criteria do not apply to samples that are diluted.

SURROGATE COMPOUNDS

In addition to these batch-related QC indicators, each organic environmental and QC sample is spiked with surrogate compounds. Surrogates are organic chemicals that behave similarly to the analytes of interest and that are rarely present in the environment. Surrogate recoveries are used to monitor the individual performance of a sample in the analytical system.

If surrogate recoveries are biased high in the LCS, LCSD, or the Method Blank, and the associated sample(s) are ND, the batch is acceptable. Otherwise, if the LCS, LCSD, or Method Blank surrogate(s) fail to meet recovery criteria, the entire sample batch is reprepared and reanalyzed. If the surrogate recoveries are outside criteria for environmental samples, the samples will be reprepared and reanalyzed unless there is objective evidence of matrix interference or if the sample dilution is greater than the threshold outlined in the associated method SOP.

The acceptance criteria do not apply to samples that are diluted. All other surrogate recoveries will be reported.

For the GC/MS BNA methods, the surrogate criterion is that two of the three surrogates for each fraction must meet acceptance criteria. The third surrogate must have a recovery of ten percent or greater.

For the Pesticide and PCB methods, the surrogate criterion is that one of two surrogate compounds must meet acceptance criteria. The second surrogate must have a recovery of 10% or greater.

TestAmerica Certifications and Approvals:

The laboratory is certified for the analytes listed on the documents below. These are available upon request. California (#01144CA), Connecticut (#PH-0590), Florida (#E87225),

Illinois (#200004), Kansas (#E10336), Minnesota (#39-999-348), New Jersey (#OH001), New York (#10975), Nevada (#OH-000482008A), OhioVAP (#CL0024), Pennsylvania (#008), West Virginia (#210), Wisconsin (#999518190),NAVY, ARMY, USDA Soil Permit

N:\QAQC\Customer Service\Narrative - Combined RCRA CWA 032609.doc

□(s10H

Data File: \\cansvr11\\dd\chem\MSS\a4hp7.i\\01203a.b\\MAD4A1AJ.D Page 7

Report Date: 08-Dec-2010 14:26

TestAmerica North Canton

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: a4hp7.i Calibration Date: 03-DEC-2010

Lab File ID: MAD4A1AJ.D Calibration Time: 08:36 Lab Smp Id: mad4a1aj Client Smp ID: MW-6

Analysis Type: SV Level: LOW
Quant Type: ISTD Sample Type: WATER

Operator: 001710

Method File: \cansvr11\dd\chem\MSS\a4hp7.i\01203a.b\8270C-625.m

Misc Info:

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	=======	=======	=======	======
1 1,4-Dichlorobenze	172173	86087	344346	91674	-46.75
2 Naphthalene-d8	704877	352439	1409754	325624	-53.80
3 Acenaphthene-d10	419903	209952	839806	197039	-53.08
4 Phenanthrene-d10	680629	340315	1361258	323190	-52.52
5 Chrysene-d12	749049	374525	1498098	378984	-49.40
6 Perylene-d12	651891	325946	1303782	341839	-47.56

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	=======	========	=======	=====
1 1,4-Dichlorobenze	3.37	2.87	3.87	3.37	-0.00
2 Naphthalene-d8	4.25	3.75	4.75	4.25	-0.00
3 Acenaphthene-d10	5.52	5.02	6.02	5.52	-0.00
4 Phenanthrene-d10	6.60	6.10	7.10	6.59	-0.08
5 Chrysene-d12	8.55	8.05	9.05	8.55	-0.06
6 Perylene-d12	9.85	9.35	10.35	9.85	-0.06

AREA UPPER LIMIT = +100% of internal standard area. AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

EXECUTIVE SUMMARY - Detection Highlights

A0K220421

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD		
MW-1 11/18/10 09:42 001						
bis(2-Ethylhexyl)	11 B	2.0	ug/L	SW846 8270C		
phthalate Carbon disulfide	0.75 J	1.0	ug/L	SW846 8260B		
MW-1 DUPLICATE 11/18/10 09:42 002			3,			
MW I DOFFICATE 11/10/10 07:42 002						
Naphthalene	0.62	0.20	ug/L	SW846 8270C		
Acetone	1.3 J	10	ug/L	SW846 8260B		
Carbon disulfide	0.63 Ј	1.0	ug/L	SW846 8260B		
MW-7 11/18/10 12:20 003						
Arsenic - DISSOLVED	75.7	10.0	ug/L	SW846 6010B		
Nickel - DISSOLVED	52.9	40.0	ug/L	SW846 6010B		
Arsenic	99.7	10.0	ug/L	SW846 6010B		
Beryllium	0.50 B	5.0	ug/L	SW846 6010B		
Nickel	55.4	40.0	ug/L	SW846 6010B		
Zinc	5.6 B,J	20.0	ug/L	SW846 6010B		
Acetone	25	10	ug/L	SW846 8260B		
Benzene	1.9	1.0	ug/L	SW846 8260B		
2-Butanone (MEK)	3.6 J	10	ug/L	SW846 8260B		
Ethyl methacrylate	0.28 J	1.0	ug/L	SW846 8260B		
4-Methyl-2-pentanone (MIBK)	3.4 J	10	ug/L	SW846 8260B		
Toluene	0.20 J	1.0	ug/L	SW846 8260B		
MW-3 11/18/10 13:35 004						
Beryllium - DISSOLVED	0.46 B	5.0	ug/L	SW846 6010B		
Beryllium	0.50 B	5.0	ug/L	SW846 6010B		
bis(2-Ethylhexyl)	1.7 J,B	2.0	ug/L	SW846 8270C		
phthalate						
Acetone	3.8 J	10	ug/L	SW846 8260B		
RINSE BLANK #2 11/18/10 15:18 005						
Beryllium	0.49 B	5.0	ug/L	SW846 6010B		
MW-6 11/18/10 16:11 006						
Arsenic - DISSOLVED	30.7	10.0	ug/L	SW846 6010B		
Beryllium - DISSOLVED	0.55 B	5.0	ug/L ug/L	SW846 6010B		
Nickel - DISSOLVED	9.6 B	40.0	ug/L	SW846 6010B		

EXECUTIVE SUMMARY - Detection Highlights

A0K220421

		REPORTING		ANALYTICAL
PARAMETER	RESULT	LIMIT	UNITS	METHOD
MW-6 11/18/10 16:11 006				
Arsenic	31.3	10.0	ug/L	SW846 6010B
Antimony	4.8 B	60.0	ug/L	SW846 6010B
Beryllium	0.57 B	5.0	ug/L	SW846 6010B
Nickel	11.4 B	40.0	ug/L	SW846 6010B
Acetone	230	40	ug/L	SW846 8260B
2-Butanone (MEK)	8.0 J	40	ug/L	SW846 8260B
MW-4 11/18/10 17:00 007				
Beryllium - DISSOLVED	0.56 B	5.0	ug/L	SW846 6010B
Nickel - DISSOLVED	8.2 B	40.0	ug/L	SW846 6010B
Antimony	3.3 B	60.0	ug/L	SW846 6010B
Beryllium	0.60 B	5.0	ug/L	SW846 6010B
Nickel	10.3 B	40.0	ug/L	SW846 6010B
Zinc	17.9 B,J		ug/L	SW846 6010B
Acetone	3.3 J	10	ug/L	SW846 8260B
MW-8 11/19/10 09:25 008				
Arsenic - DISSOLVED	4.0 B	10.0	ug/L	SW846 6010B
Beryllium - DISSOLVED	0.62 B	5.0	ug/L	SW846 6010B
Nickel - DISSOLVED	15.8 B	40.0	ug/L	SW846 6010B
Zinc - DISSOLVED	7.6 B,J	20.0	ug/L	SW846 6010B
Arsenic	10.3	10.0	ug/L	SW846 6010B
Lead	2.9 B	3.0	ug/L	SW846 6010B
Beryllium	0.89 B	5.0	ug/L	SW846 6010B
Chromium	5.2 B	10.0	ug/L	SW846 6010B
Copper	15.5 B	25.0	ug/L	SW846 6010B
Nickel	25.9 B	40.0	ug/L	SW846 6010B
Zinc	34.5 J	20.0	ug/L ug/L	SW846 6010B
Acetone	45	10	ug/L ug/L	SW846 8260B
2-Butanone (MEK)	3.0 J	10	ug/L ug/L	SW846 8260B
Isobutyl alcohol	11 J	50	ug/L ug/L	SW846 8260B
4-Methyl-2-pentanone	3.1 J	10	ug/L ug/L	SW846 8260B
4-Methy1-2-pentanone (MIBK)	3.1 0	10	ug/L	SW040 0200B
Toluene	0.23 J	1.0	ug/L	SW846 8260B
MW-2 11/19/10 10:40 009				
Arsenic - DISSOLVED	5.5 B	10.0	ug/L	SW846 6010B
Beryllium - DISSOLVED	0.59 B	5.0	ug/L	SW846 6010B
Arsenic	5.9 B	10.0	ug/L	SW846 6010B
Beryllium	0.74 B	5.0	ug/L	SW846 6010B
201/1114	J., 1 D	2.0	~5, 1	5010 00100

EXECUTIVE SUMMARY - Detection Highlights

A0K220421

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
MW-5 11/19/10 11:30 010				
Arsenic - DISSOLVED	11.0	10.0	ug/L	SW846 6010B
Lead - DISSOLVED	2.1 B	3.0	ug/L	SW846 6010B
Selenium - DISSOLVED	9.4	5.0	ug/L	SW846 6010B
Antimony - DISSOLVED	104	60.0	ug/L	SW846 6010B
Beryllium - DISSOLVED	0.70 B	5.0	ug/L	SW846 6010B
Chromium - DISSOLVED	2.4 B	10.0	ug/L	SW846 6010B
Nickel - DISSOLVED	140	40.0	ug/L	SW846 6010B
Zinc - DISSOLVED	5.7 B,J	20.0	ug/L	SW846 6010B
Arsenic	12.6	10.0	ug/L	SW846 6010B
Lead	10.2	3.0	ug/L	SW846 6010B
Selenium	7.8	5.0	ug/L	SW846 6010B
Antimony	103	60.0	ug/L	SW846 6010B
Beryllium	0.77 B	5.0	ug/L	SW846 6010B
Chromium	4.4 B	10.0	ug/L	SW846 6010B
Copper	19.1 B	25.0	ug/L	SW846 6010B
Nickel	147	40.0	ug/L	SW846 6010B
Zinc	23.9 J	20.0	ug/L	SW846 6010B
Acetone	130	50	ug/L	SW846 8260B
Benzene	13	5.0	ug/L	SW846 8260B
2-Butanone (MEK)	42 J	50	ug/L	SW846 8260B
Carbon disulfide	1.7 J	5.0	ug/L	SW846 8260B
Ethylbenzene	2.4 J	5.0	ug/L	SW846 8260B
<pre>4-Methyl-2-pentanone (MIBK)</pre>	340	50	ug/L	SW846 8260B
Toluene	7.0	5.0	ug/L	SW846 8260B
Trichloroethene	2.0 J	5.0	ug/L	SW846 8260B
Xylenes (total)	5.2 J	10	ug/L	SW846 8260B
TRIP BLANK 11/19/10 12:30 011				
Methylene chloride	1.8	1.0	ug/L	SW846 8260B

ANALYTICAL METHODS SUMMARY

A0K220421

PARAMETER	ANALYTICAL METHOD
Inductively Coupled Plasma (ICP) Metals	SW846 6010B
Mercury in Liquid Waste (Manual Cold-Vapor)	SW846 7470A
Semivolatile Organic Compounds by GC/MS	SW846 8270C
Volatile Organics by GC/MS	SW846 8260B

References:

SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

A0K220421

<u>WO # 2</u>	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
MAD3T	001	MW-1	11/18/10	09:42
MAD32	002	MW-1 DUPLICATE	11/18/10	09:42
MAD35	003	MW-7	11/18/10	12:20
MAD37	004	MW-3	11/18/10	13:35
MAD39	005	RINSE BLANK #2	11/18/10	15:18
MAD4A	006	MW-6	11/18/10	16:11
MAD4D	007	MW-4	11/18/10	17:00
MAD4E	800	MW-8	11/19/10	09:25
MAD4F	009	MW-2	11/19/10	10:40
MAD4G	010	MW-5	11/19/10	11:30
MAD4R	011	TRIP BLANK	11/19/10	12:30

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Environmental Resources Management Inc

Client Sample ID: MW-1

GC/MS Volatiles

Lot-Sample #...: A0K220421-001 Work Order #...: MAD3T1A6 Matrix.....: WG

Date Sampled...: 11/18/10 09:42 Date Received..: 11/20/10 Prep Date....: 12/02/10 Analysis Date..: 12/02/10

Prep Batch #...: 0337199

Dilution Factor: 1 Method.....: SW846 8260B

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND	10	ug/L
Acetonitrile	ND	20	ug/L
Acrolein	ND	20	ug/L
Acrylonitrile	ND	20	ug/L
Allyl chloride	ND	2.0	ug/L
Benzene	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
Bromoform	ND	1.0	uq/L
Bromomethane	ND	1.0	ug/L
2-Butanone (MEK)	ND	10	ug/L
Carbon disulfide	0.75 J	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Chloroethane	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
Chloroprene	ND	2.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,2-Dibromo-3-chloro-	ND	2.0	ug/L
propane			
1,2-Dibromoethane (EDB)	ND	1.0	ug/L
Dibromomethane	ND	1.0	ug/L
trans-1,4-Dichloro-	ND	1.0	ug/L
2-butene			
Dichlorodifluoromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
1,4-Dioxane	ND	200	ug/L
Ethylbenzene	ND	1.0	ug/L
Ethyl methacrylate	ND	1.0	ug/L
2-Hexanone	ND	10	ug/L
Iodomethane	ND	1.0	ug/L
Isobutyl alcohol	ND	50	ug/L
Methacrylonitrile	ND	2.0	ug/L

Client Sample ID: MW-1

GC/MS Volatiles

Lot-Sample #...: A0K220421-001 Work Order #...: MAD3T1A6 Matrix.....: WG

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Methylene chloride	ND	1.0	ug/L
Methyl methacrylate	ND	2.0	ug/L
4-Methyl-2-pentanone	ND	10	ug/L
(MIBK)			
Propionitrile	ND	4.0	ug/L
Styrene	ND	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
Vinyl acetate	ND	2.0	ug/L
Vinyl chloride	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Dibromofluoromethane	96	(75 - 121)	
1,2-Dichloroethane-d4	110	(63 - 129)	
Toluene-d8	88	(74 - 115)	
4-Bromofluorobenzene	80	(66 - 117)	
MOTE (C)			

J Estimated result. Result is less than RL.

MW-1

GC/MS Volatiles

Lot-Sample #: A0K220421-001 Work Order #: MAD3T1A6 Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

PARAMETER	CAS #	ESTIMATED RESULT	RETENTION TIME	N <u>UNITS</u>
Unknown		38 J	м 1.3697	ug/L
Unknown		2.2 J	M 14.603	ug/L

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-1

GC/MS Semivolatiles

Lot-Sample #...: A0K220421-001 Work Order #...: MAD3T1A7 Matrix.....: WG

Date Sampled...: 11/18/10 09:42 Date Received..: 11/20/10 Prep Date....: 11/24/10 Analysis Date..: 12/03/10

Prep Batch #...: 0328034

Dilution Factor: 1 Method.....: SW846 8270C

		REPORTING	
PARAMETER	RESULT	LIMIT	<u>UNITS</u>
Phenol	ND	1.0	ug/L
bis(2-Chloroethyl)-	ND	1.0	ug/L
ether			
2-Chlorophenol	ND	1.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
2-Methylphenol	ND	1.0	ug/L
2,2'-oxybis(1-Chloro-	ND	1.0	ug/L
propane)			
4-Methylphenol	ND	1.0	ug/L
N-Nitrosodi-n-propyl-	ND	1.0	ug/L
amine			
Hexachloroethane	ND	1.0	ug/L
Nitrobenzene	ND	1.0	ug/L
Isophorone	ND	1.0	ug/L
2-Nitrophenol	ND	2.0	ug/L
2,4-Dimethylphenol	ND	2.0	ug/L
bis(2-Chloroethoxy)	ND	1.0	ug/L
methane			
2,4-Dichlorophenol	ND	2.0	ug/L
1,2,4-Trichloro-	ND	1.0	ug/L
benzene			
Naphthalene	ND	0.20	ug/L
4-Chloroaniline	ND	2.0	ug/L
Hexachlorobutadiene	ND	1.0	ug/L
4-Chloro-3-methylphenol	ND	2.0	ug/L
2-Methylnaphthalene	ND	0.20	ug/L
Hexachlorocyclopenta-	ND	10	ug/L
diene			
2,4,6-Trichloro-	ND	5.0	ug/L
phenol			
2,4,5-Trichloro-	ND	5.0	ug/L
phenol			
2-Chloronaphthalene	ND	1.0	ug/L
2-Nitroaniline	ND	2.0	ug/L
Dimethyl phthalate	ND	1.0	ug/L
Acenaphthylene	ND	0.20	ug/L
2,6-Dinitrotoluene	ND	5.0	ug/L

Client Sample ID: MW-1

GC/MS Semivolatiles

Lot-Sample #:	A0K220421-001	Work Order	# : MAD3T1A7	Matrix	: WG
TOU DAMETE #	AUNZZUTZI UUI	MOTV OTGET	# • • • • PIADJIIA/	Maci in	. • WG

	REPORTING	
RESULT	LIMIT	UNITS
ND	2.0	ug/L
ND	0.20	ug/L
ND	5.0	ug/L
ND		ug/L
ND	1.0	ug/L
ND	5.0	ug/L
ND		ug/L
ND		ug/L
ND	0.20	ug/L
ND	2.0	ug/L
ND		ug/L
ND	1.0	ug/L
ND	2.0	ug/L
		= '
ND	0.20	ug/L
ND	5.0	ug/L
ND		ug/L
ND	1.0	ug/L
ND	5.0	ug/L
ND	0.20	ug/L
ND	0.20	ug/L
11 B		ug/L
		_
ND	1.0	ug/L
ND	0.20	ug/L
PERCENT	RECOVERY	
RECOVERY	LIMITS	_
41	(27 - 111)	
44	(28 - 110)	
70	(37 - 119)	
42	(10 - 110)	
19		
61	(22 - 120)	
	ND N	ND 2.0 ND 0.20 ND 5.0 ND 1.0 ND 1.0 ND 1.0 ND 2.0 ND 1.0 ND 2.0 ND 1.0 ND 0.20 ND 0.20 ND 0.20 ND 1.0 ND 0.20 ND 1.0 ND 0.20 ND 1.0 ND 0.20 ND 0.20

Client Sample ID: MW-1

GC/MS Semivolatiles

Lot-Sample #...: A0K220421-001 Work Order #...: MAD3T1A7 Matrix.....: WG

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

MW-1

GC/MS Semivolatiles

Lot-Sample #: A0K220421-001 Work Order #: MAD3T1A7 Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED		RETENTION	
PARAMETER	CAS #	RESULT		TIME	<u>UNITS</u>
Unknown Organic Acid		1.1 J	M	3.6661	ug/L
Unknown		0.95 J	M	4.0137	ug/L
Unknown		7.7 J	M	4.0565	ug/L
Unknown		1.6 J	M	4.4577	ug/L
Unknown		4.4 J	M	5.3134	ug/L
Unknown		2.8 J	M	5.3509	ug/L
Unknown		3.4 J	M	6.1371	ug/L
NOTE(S):					

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-1

TOTAL Metals

Lot-Sample #...: A0K220421-001 **Matrix.....:** WG

Date Sampled...: 11/18/10 09:42 Date Received..: 11/20/10

PARAMETER	RESULT	REPORTING	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Arsenic	.: 0327012 ND	10.0 Dilution Fact	3 ·	SW846 6010B	11/23-11/29/10	MAD3T1AA
Lead	ND	3.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD3T1AC
Selenium	ND	5.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD3T1AD
Thallium	ND	10.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD3T1AE
Antimony	ND	60.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD3T1AF
Beryllium	ND	5.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD3T1AG
Cadmium	ND	5.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD3T1AH
Chromium	ND	10.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD3T1AJ
Copper	ND	25.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD3T1AK
Nickel	ND	40.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD3T1AL
Silver	ND	10.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD3T1AM
Zinc	ND	20.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD3T1AN
Mercury	ND	0.20 Dilution Fact	ug/L or: 1	SW846 7470A	11/23-11/24/10	MAD3T1A4

Client Sample ID: MW-1

DISSOLVED Metals

Lot-Sample #...: A0K220421-001 **Matrix.....:** WG

Date Sampled...: 11/18/10 09:42 Date Received..: 11/20/10

PARAMETER	RESULT	REPORTING	; <u>UNITS</u>	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #	• 0227012					
Arsenic	ND	10.0 Dilution Factor		SW846 6010B	11/23-11/29/10	MAD3T1AP
Lead	ND	3.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD3T1AQ
Selenium	ND	5.0 Dilution Factor	_	SW846 6010B	11/23-11/29/10	MAD3T1AR
Thallium	ND	10.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD3T1AT
Antimony	ND	60.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD3T1AU
Beryllium	ND	5.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD3T1AV
Cadmium	ND	5.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD3T1AW
Chromium	ND	10.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD3T1AX
Copper	ND	25.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD3T1A0
Nickel	ND	40.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD3T1A1
Silver	ND	10.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD3T1A2
Zinc	ND	20.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD3T1A3
Mercury	ND	0.20 Dilution Factor	ug/L or: 1	SW846 7470A	11/23-11/24/10	MAD3T1A5

Client Sample ID: MW-1 DUPLICATE

GC/MS Volatiles

Lot-Sample #...: A0K220421-002 Work Order #...: MAD321AH Matrix.....: WG

Date Sampled...: 11/18/10 09:42 Date Received..: 11/20/10 Prep Date....: 12/02/10 Analysis Date..: 12/02/10

Prep Batch #...: 0337199

Dilution Factor: 1 Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acetone	1.3 J	10	ug/L
Acetonitrile	ND	20	ug/L
Acrolein	ND	20	ug/L
Acrylonitrile	ND	20	ug/L
Allyl chloride	ND	2.0	ug/L
Benzene	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	ug/L
2-Butanone (MEK)	ND	10	ug/L
Carbon disulfide	0.63 J	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Chloroethane	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
Chloroprene	ND	2.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,2-Dibromo-3-chloro-	ND	2.0	ug/L
propane			
1,2-Dibromoethane (EDB)	ND	1.0	ug/L
Dibromomethane	ND	1.0	ug/L
trans-1,4-Dichloro-	ND	1.0	ug/L
2-butene			
Dichlorodifluoromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
1,4-Dioxane	ND	200	ug/L
Ethylbenzene	ND	1.0	ug/L
Ethyl methacrylate	ND	1.0	ug/L
2-Hexanone	ND	10	ug/L
Iodomethane	ND	1.0	ug/L
Isobutyl alcohol	ND	50	ug/L
Methacrylonitrile	ND	2.0	ug/L

Client Sample ID: MW-1 DUPLICATE

GC/MS Volatiles

Lot-Sample #...: A0K220421-002 Work Order #...: MAD321AH Matrix.....: WG

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Methylene chloride	ND	1.0	ug/L
Methyl methacrylate	ND	2.0	ug/L
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L
Propionitrile	ND	4.0	ug/L
Styrene	ND	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
Vinyl acetate	ND	2.0	ug/L
Vinyl chloride	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Dibromofluoromethane	97	(75 - 121)
1,2-Dichloroethane-d4	110	(63 - 129)
Toluene-d8	90	(74 - 115)
4-Bromofluorobenzene	82	(66 - 117)

J Estimated result. Result is less than RL.

MW-1 DUPLICATE

GC/MS Volatiles

Lot-Sample #: A0K220421-002 Work Order #: MAD321AH Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-1 DUPLICATE

GC/MS Semivolatiles

Lot-Sample #...: A0K220421-002 Work Order #...: MAD321AJ Matrix.....: WG

Date Sampled...: 11/18/10 09:42 Date Received..: 11/20/10 Prep Date....: 11/24/10 Analysis Date..: 12/03/10

Prep Batch #...: 0328034

Dilution Factor: 1 Method.....: SW846 8270C

		REPORTIN	1G
PARAMETER	RESULT	LIMIT	UNITS
Phenol	ND	1.0	ug/L
bis(2-Chloroethyl)-	ND	1.0	ug/L
ether			-5,
2-Chlorophenol	ND	1.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
2-Methylphenol	ND	1.0	ug/L
2,2'-oxybis(1-Chloro- propane)	ND	1.0	ug/L
4-Methylphenol	ND	1.0	ug/L
N-Nitrosodi-n-propyl-	ND	1.0	ug/L ug/L
amine	ND	1.0	ug/ L
Hexachloroethane	ND	1.0	ug/L
Nitrobenzene	ND	1.0	ug/L
Isophorone	ND	1.0	ug/L
2-Nitrophenol	ND	2.0	ug/L
2,4-Dimethylphenol	ND	2.0	ug/L
bis(2-Chloroethoxy)	ND	1.0	ug/L
methane	ND	1.0	ug/п
2,4-Dichlorophenol	ND	2.0	ug/L
1,2,4-Trichloro-	ND	1.0	ug/L
benzene	ND	1.0	ug/ L
Naphthalene	0.62	0.20	ug/L
4-Chloroaniline	ND	2.0	ug/L
Hexachlorobutadiene	ND	1.0	ug/L
4-Chloro-3-methylphenol	ND	2.0	ug/L
2-Methylnaphthalene	ND	0.20	ug/L
Hexachlorocyclopenta-	ND	10	ug/L
diene	110	10	45/ H
2,4,6-Trichloro-	ND	5.0	ug/L
phenol	112	3.0	α9/12
2,4,5-Trichloro-	ND	5.0	ug/L
phenol	112	3.0	α ₃ / 1
2-Chloronaphthalene	ND	1.0	ug/L
2-Nitroaniline	ND	2.0	ug/L ug/L
Dimethyl phthalate	ND	1.0	ug/L ug/L
Acenaphthylene	ND	0.20	ug/L ug/L
2,6-Dinitrotoluene	ND	5.0	ug/L
_,			~ j / L

Client Sample ID: MW-1 DUPLICATE

GC/MS Semivolatiles

Lot-Sample #...: A0K220421-002 Work Order #...: MAD321AJ Matrix.....: WG

		REPORTING	
PARAMETER	RESULT	LIMIT	<u>UNITS</u>
3-Nitroaniline	ND	2.0	ug/L
Acenaphthene	ND	0.20	ug/L
2,4-Dinitrophenol	ND	5.0	ug/L
4-Nitrophenol	ND	5.0	ug/L
Dibenzofuran	ND	1.0	ug/L
2,4-Dinitrotoluene	ND	5.0	ug/L
Diethyl phthalate	ND	1.0	ug/L
4-Chlorophenyl phenyl	ND	2.0	ug/L
ether			
Fluorene	ND	0.20	ug/L
4-Nitroaniline	ND	2.0	ug/L
4,6-Dinitro-	ND	5.0	ug/L
2-methylphenol			
N-Nitrosodiphenylamine	ND	1.0	ug/L
4-Bromophenyl phenyl	ND	2.0	ug/L
ether			
Hexachlorobenzene	ND	0.20	ug/L
Pentachlorophenol	ND	5.0	ug/L
Phenanthrene	ND	0.20	ug/L
Anthracene	ND	0.20	ug/L
Carbazole	ND	1.0	ug/L
Di-n-butyl phthalate	ND	1.0	ug/L
Fluoranthene	ND	0.20	ug/L
Pyrene	ND	0.20	ug/L
Butyl benzyl phthalate	ND	1.0	ug/L
3,3'-Dichlorobenzidine	ND	5.0	ug/L
Benzo(a)anthracene	ND	0.20	ug/L
Chrysene	ND	0.20	ug/L
bis(2-Ethylhexyl)	ND	2.0	ug/L
phthalate			
Di-n-octyl phthalate	ND	1.0	ug/L
Benzo(b)fluoranthene	ND	0.20	ug/L
Benzo(k)fluoranthene	ND	0.20	ug/L
Benzo(a)pyrene	ND	0.20	ug/L
Indeno(1,2,3-cd)pyrene	ND	0.20	ug/L
Dibenz(a,h)anthracene	ND	0.20	ug/L
Benzo(ghi)perylene	ND	0.20	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Nitrobenzene-d5	17 *	(27 - 111)	
2-Fluorobiphenyl	18 *	(28 - 110)	
Terphenyl-d14	23 *	(37 - 119)	
Phenol-d5	16	(10 - 110)	
2-Fluorophenol	4.9 *	(10 - 110)	
2,4,6-Tribromophenol	18 *	(22 - 120)	

Client Sample ID: MW-1 DUPLICATE

GC/MS Semivolatiles

Lot-Sample #...: A0K220421-002 Work Order #...: MAD321AJ Matrix.....: WG

^{*} Surrogate recovery is outside stated control limits.

MW-1 DUPLICATE

GC/MS Semivolatiles

Lot-Sample #: A0K220421-002 Work Order #: MAD321AJ Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	1
PARAMETER	CAS #	RESULT	TIME	UNITS
Unknown Aromatic		0.82 JA	м 2.6711	ug/L
Unknown		2.7 J	м 4.0564	ug/L
Unknown		0.88 J	м 6.1317	ug/L
NOTE(S):				

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-1 DUPLICATE

GC/MS Semivolatiles

Lot-Sample #...: A0K220421-002 Work Order #...: MAD322AJ Matrix.....: WG

Date Sampled...: 11/18/10 09:42 Date Received..: 11/20/10 Prep Date....: 12/09/10 Analysis Date..: 12/10/10

Prep Batch #...: 0343044

Dilution Factor: 1 Method.....: SW846 8270C

PARAMETER RESULT			REPORTIN	1G
Dis(2-Chloroethyl) - ether ND 1.0 ug/L	PARAMETER	RESULT		
Dis(2-Chloroethyl) - ether ND 1.0 ug/L	Phenol	ND	1.0	ug/L
2-Chlorophenol ND 1.0 ug/L 1,3-Dichlorobenzene ND 1.0 ug/L 1,4-Dichlorobenzene ND 1.0 ug/L 1,2-Dichlorobenzene ND 1.0 ug/L 1,2-Dichlorobenzene ND 1.0 ug/L 2-Methylphenol ND 1.0 ug/L 2,2'-oxybis(1-Chloro- propane)	bis(2-Chloroethyl)-	ND		
1,3-Dichlorobenzene ND 1.0 ug/L 1,4-Dichlorobenzene ND 1.0 ug/L 1,2-Dichlorobenzene ND 1.0 ug/L 2-Methylphenol ND 1.0 ug/L 2,2'-oxybis(1-Chloro-propus ND 1.0 ug/L Propane) ND 1.0 ug/L 4-Methylphenol ND 1.0 ug/L N-Nitrosodi-n-propyl-amine ND 1.0 ug/L Nitrobenzene ND 1.0 ug/L Nitrobenzene ND 1.0 ug/L Nitrobenzene ND 1.0 ug/L 1.4-Dimethylphenol ND 2.0 ug/L 2,4-Dimethylphenol ND 1.0 ug/L 2,4-Dichlorophenol ND 2.0 ug/L 1,2,4-Trichloro-phenol ND 2.0 ug/L 1,2,4-Trichloro-phenol ND 0.20 ug/L 4-Chloroaniline ND 0.20 ug/L Hexachlorobutadiene ND 1.0 ug/L 4-Chloroa-methylphenol ND <td>ether</td> <td></td> <td></td> <td>_</td>	ether			_
1,4-Dichlorobenzene ND 1.0 ug/L 1,2-Dichlorobenzene ND 1.0 ug/L 2-Methylphenol ND 1.0 ug/L 2,2'-oxybis(1-Chloro-propane) ND 1.0 ug/L 4-Methylphenol ND 1.0 ug/L N-Nitrosodi-n-propyl-amine ND 1.0 ug/L 4-Methylphenol ND 1.0 ug/L Nitrobenzene ND 1.0 ug/L Isophorone ND 1.0 ug/L 2-Nitrophenol ND 2.0 ug/L 2,4-Dimethylphenol ND 2.0 ug/L bis(2-Chloroethoxy) ND 1.0 ug/L methane 2.4-Dichlorophenol ND 2.0 ug/L 1,2,4-Trichloro-horo-ND 1.0 ug/L benzene ND 0.20 ug/L Naphthalene ND 0.20 ug/L 4-Chloroaliline ND 2.0 ug/L Hexachlorocyclopenta-diene ND 0.20 ug/L 2,4,6-Trichloro-phenol ND <td>2-Chlorophenol</td> <td>ND</td> <td>1.0</td> <td>ug/L</td>	2-Chlorophenol	ND	1.0	ug/L
1,2-Dichlorobenzene ND 1.0 ug/L 2-Methylphenol ND 1.0 ug/L 2,2'-oxybis(1-Chloro- propane) 4-Methylphenol ND 1.0 ug/L N-Nitrosodi-n-propyl- amine Hexachloroethane ND 1.0 ug/L Nitrobenzene ND 1.0 ug/L Sophorone ND 1.0 ug/L 2,4-Dimethylphenol ND 2.0 ug/L 0,4-Dimethylphenol ND 2.0 ug/L 0,2,4-Dimethoro- benzene ND 1.0 ug/L 1,2,4-Trichloro- ND 1.0 ug/L 1-2,4-Trichloro- ND 1.0 ug/L 1-2,4-Chloroathane ND 1.0 ug/L 1-2,4-Chloroathane ND 1.0 ug/L 1-2,4-Dimethylphenol ND 1.0 ug/L 1,2,4-Trichloro- ND 1.0 ug/L 1,2,4-Trichloro- ND 1.0 ug/L 1,2,4-Trichloro- ND 1.0 ug/L 1-2,4-Chloroathadiene ND 1.0 ug/L 1-2-Methylnaphthalene ND 1.0 ug/L 1-2-Nitroaniline ND 1.0 ug/L	1,3-Dichlorobenzene	ND	1.0	ug/L
2-Methylphenol ND 1.0 ug/L 2,2'-oxybis(1-Chloro- propane) 4-Methylphenol ND 1.0 ug/L N-Nitrosodi-n-propyl- amine Hexachloroethane ND 1.0 ug/L Isophorone ND 1.0 ug/L 2-Nitrophenol ND 1.0 ug/L 2-Nitrophenol ND 2.0 ug/L 2-Nitrophenol ND 2.0 ug/L bis(2-Chloroethoxy) ND 1.0 ug/L methane 2,4-Dichlorophenol ND 2.0 ug/L 1,2,4-Trichloro- benzene ND 0.20 ug/L 4-Chloroaniline ND 2.0 ug/L 4-Chloro-3-methylphenol ND 3.0 ug/L 4-Chloro	1,4-Dichlorobenzene	ND	1.0	ug/L
2,2'-oxybis(1-Chloropropane) 4-Methylphenol ND 1.0 ug/L NND 1.0 ug/L Amine Hexachloroethane ND 1.0 ug/L Nitrobenzene ND 1.0 ug/L Sophorone ND 1.0 ug/L 2-Nitrophenol ND 2.0 ug/L 2,4-Dimethylphenol ND 2.0 ug/L methane 2,4-Dichlorophenol ND 2.0 ug/L 1,2,4-Trichlorobenzene ND 1.0 ug/L 4-Chloroaniline ND 2.0 ug/L 4-Chloro-3-methylphenol ND 2.0 ug/L 2-Metahylnaphthalene ND 0.20 ug/L 1,4,6-Trichlorobens ND 0.20 ug/L 1,4,5-Trichlorobens ND 0.20 ug/L Achloroaphthalene ND 0.20 ug/L	1,2-Dichlorobenzene	ND	1.0	ug/L
### Propage Pr	2-Methylphenol	ND	1.0	ug/L
4-Methylphenol ND 1.0 ug/L N-Nitrosodi-n-propyl-amine ND 1.0 ug/L Hexachloroethane ND 1.0 ug/L Nitrobenzene ND 1.0 ug/L Isophorone ND 1.0 ug/L 2-Nitrophenol ND 2.0 ug/L 2,4-Dimethylphenol ND 2.0 ug/L bis(2-Chloroethoxy) ND 1.0 ug/L methane ND 2.0 ug/L 2,4-Dichlorophenol ND 1.0 ug/L 1,2,4-Trichloro- ND 1.0 ug/L benzene ND 0.20 ug/L Naphthalene ND 0.20 ug/L 4-Chloroaniline ND 1.0 ug/L Hexachlorobutadiene ND 1.0 ug/L 4-Chloro-3-methylphenol ND 2.0 ug/L 2-Methylnaphthalene ND 0.20 ug/L Hexachlorocyclopenta- ND 5.0 ug/L diene 2,4,5-Trichloro- ND 5	2,2'-oxybis(1-Chloro-	ND	1.0	ug/L
ND 1.0 ug/L	propane)			
### Ambie	4-Methylphenol	ND	1.0	ug/L
Hexachloroethane	N-Nitrosodi-n-propyl-	ND	1.0	ug/L
Nitrobenzene ND 1.0 ug/L Isophorone ND 1.0 ug/L 2-Nitrophenol ND 2.0 ug/L 2,4-Dimethylphenol ND 2.0 ug/L bis(2-Chloroethoxy) ND 1.0 ug/L methane 2.4-Dichlorophenol ND 2.0 ug/L 1,2,4-Trichloro- ND 1.0 ug/L benzene ND 0.20 ug/L A-Chloroaniline ND 2.0 ug/L Hexachlorobutadiene ND 1.0 ug/L 4-Chloro-3-methylphenol ND 2.0 ug/L 2-Methylnaphthalene ND 0.20 ug/L Hexachlorocyclopenta- ND 10 ug/L diene 2,4,6-Trichloro- ND 5.0 ug/L 2,4,5-Trichloro- ND 5.0 ug/L phenol 2-Chloronaphthalene ND 1.0 ug/L 2-Nitroaniline ND 2.0 ug/L </td <td></td> <td></td> <td></td> <td></td>				
Isophorone	Hexachloroethane	ND	1.0	ug/L
2-Nitrophenol ND 2.0 ug/L 2,4-Dimethylphenol ND 2.0 ug/L bis(2-Chloroethoxy) ND 1.0 ug/L methane 2,4-Dichlorophenol ND 2.0 ug/L 1,2,4-Trichloro- ND 1.0 ug/L benzene Naphthalene ND 0.20 ug/L 4-Chloroaniline ND 2.0 ug/L 4-Chloro-3-methylphenol ND 2.0 ug/L 2-Methylnaphthalene ND 0.20 ug/L Hexachlorocyclopenta- ND 0.20 ug/L diene 2,4,6-Trichloro- ND 5.0 ug/L phenol 2,4,5-Trichloro- ND 5.0 ug/L 2-Chloronaphthalene ND 1.0 ug/L phenol 2-Chloronaphthalene ND 1.0 ug/L 2-Nitroaniline ND 1.0 ug/L Dimethyl phthalate ND 1.0 ug/L Acenaphthylene ND 1.0 ug/L	Nitrobenzene	ND	1.0	ug/L
2,4-Dimethylphenol ND 2.0 ug/L bis(2-Chloroethoxy) ND 1.0 ug/L methane ug/L 2,4-Dichlorophenol ND 2.0 ug/L 1,2,4-Trichloro- ND 1.0 ug/L benzene ND 0.20 ug/L Naphthalene ND 2.0 ug/L 4-Chloroaniline ND 1.0 ug/L Hexachlorobutadiene ND 2.0 ug/L 4-Chloro-3-methylphenol ND 2.0 ug/L 2-Methylnaphthalene ND 0.20 ug/L Hexachlorocyclopenta- ND 10 ug/L diene 2,4,6-Trichloro- ND 5.0 ug/L 2,4,5-Trichloro- ND 5.0 ug/L phenol 2.4,5-Trichloro- ND 1.0 ug/L 2-Chloronaphthalene ND 1.0 ug/L 2-Nitroaniline ND 1.0 ug/L Dimethyl phthalate ND 0.20 ug/L	Isophorone	ND	1.0	ug/L
bis(2-Chloroethoxy) methane ND 1.0 ug/L 2,4-Dichlorophenol ND 2.0 ug/L 1,2,4-Trichloro- benzene ND 1.0 ug/L Naphthalene ND 0.20 ug/L 4-Chloroaniline ND 2.0 ug/L Hexachlorobutadiene ND 1.0 ug/L 4-Chloro-3-methylphenol ND 2.0 ug/L 2-Methylnaphthalene ND 0.20 ug/L Hexachlorocyclopenta- diene ND 10 ug/L 2,4,6-Trichloro- phenol ND 5.0 ug/L 2,4,5-Trichloro- phenol ND 5.0 ug/L 2-Chloronaphthalene ND 1.0 ug/L 2-Nitroaniline ND 2.0 ug/L Dimethyl phthalate ND 1.0 ug/L Acenaphthylene ND 0.20 ug/L	2-Nitrophenol	ND	2.0	ug/L
methane ND 2.0 ug/L 1,2,4-Trichloro- ND 1.0 ug/L benzene ND 1.0 ug/L Naphthalene ND 0.20 ug/L 4-Chloroaniline ND 2.0 ug/L Hexachlorobutadiene ND 1.0 ug/L 4-Chloro-3-methylphenol ND 2.0 ug/L 2-Methylnaphthalene ND 0.20 ug/L Hexachlorocyclopenta- ND 10 ug/L diene 2,4,6-Trichloro- ND 5.0 ug/L phenol 2,4,5-Trichloro- ND 5.0 ug/L phenol 2-Chloronaphthalene ND 1.0 ug/L 2-Nitroaniline ND 2.0 ug/L Dimethyl phthalate ND 1.0 ug/L Acenaphthylene ND 0.20 ug/L	2,4-Dimethylphenol	ND	2.0	ug/L
2,4-Dichlorophenol ND 2.0 ug/L 1,2,4-Trichloro- ND 1.0 ug/L benzene ND 0.20 ug/L Naphthalene ND 2.0 ug/L 4-Chloroaniline ND 1.0 ug/L Hexachlorobutadiene ND 2.0 ug/L 4-Chloro-3-methylphenol ND 0.20 ug/L 2-Methylnaphthalene ND 0.20 ug/L Hexachlorocyclopenta- ND 10 ug/L diene 2,4,6-Trichloro- ND 5.0 ug/L phenol 2,4,5-Trichloro- ND 5.0 ug/L 2-Chloronaphthalene ND 1.0 ug/L 2-Nitroaniline ND 2.0 ug/L Dimethyl phthalate ND 1.0 ug/L Acenaphthylene ND 0.20 ug/L	bis(2-Chloroethoxy)	ND	1.0	ug/L
1,2,4-Trichloro-benzene ND 1.0 ug/L Naphthalene ND 0.20 ug/L 4-Chloroaniline ND 2.0 ug/L Hexachlorobutadiene ND 1.0 ug/L 4-Chloro-3-methylphenol ND 2.0 ug/L 2-Methylnaphthalene ND 0.20 ug/L Hexachlorocyclopenta-diene ND 10 ug/L diene 2,4,6-Trichloro-phenol 5.0 ug/L 2,4,5-Trichloro-phenol ND 5.0 ug/L 2-Chloronaphthalene ND 1.0 ug/L 2-Nitroaniline ND 2.0 ug/L Dimethyl phthalate ND 1.0 ug/L Acenaphthylene ND 0.20 ug/L	methane			
Denzene Naphthalene ND 0.20 ug/L 4-Chloroaniline ND 2.0 ug/L Hexachlorobutadiene ND 1.0 ug/L 4-Chloro-3-methylphenol ND 2.0 ug/L 2-Methylnaphthalene ND 0.20 ug/L Hexachlorocyclopenta- ND 0.20 ug/L diene 2,4,6-Trichloro- ND 5.0 ug/L phenol 2,4,5-Trichloro- ND 5.0 ug/L phenol 2-Chloronaphthalene ND 1.0 ug/L	2,4-Dichlorophenol	ND	2.0	ug/L
Naphthalene ND 0.20 ug/L 4-Chloroaniline ND 2.0 ug/L Hexachlorobutadiene ND 1.0 ug/L 4-Chloro-3-methylphenol ND 2.0 ug/L 2-Methylnaphthalene ND 0.20 ug/L Hexachlorocyclopenta- ND 10 ug/L diene 10 ug/L diene 10 ug/L 2,4,6-Trichloro- ND 5.0 ug/L phenol 10 ug/L 2-Chloronaphthalene ND 1.0 ug/L phenol 1.0 ug/L 2-Nitroaniline ND 1.0 ug/L Dimethyl phthalate ND 1.0 ug/L Acenaphthylene ND 0.20 ug/L	1,2,4-Trichloro-	ND	1.0	ug/L
4-Chloroaniline ND 2.0 ug/L Hexachlorobutadiene ND 1.0 ug/L 4-Chloro-3-methylphenol ND 2.0 ug/L 2-Methylnaphthalene ND 0.20 ug/L Hexachlorocyclopenta- diene ND 10 ug/L 2,4,6-Trichloro- phenol ND 5.0 ug/L 2,4,5-Trichloro- phenol ND 5.0 ug/L 2-Chloronaphthalene ND 1.0 ug/L 2-Nitroaniline ND 2.0 ug/L Dimethyl phthalate ND 1.0 ug/L Acenaphthylene ND 0.20 ug/L	benzene			
Hexachlorobutadiene ND 1.0 ug/L 4-Chloro-3-methylphenol ND 2.0 ug/L 2-Methylnaphthalene ND 0.20 ug/L Hexachlorocyclopenta- ND 10 ug/L diene 2,4,6-Trichloro- ND 5.0 ug/L phenol 2,4,5-Trichloro- ND 5.0 ug/L phenol 2-Chloronaphthalene ND 1.0 ug/L 2-Nitroaniline ND 2.0 ug/L Dimethyl phthalate ND 1.0 ug/L Acenaphthylene ND 0.20 ug/L	Naphthalene	ND	0.20	ug/L
4-Chloro-3-methylphenol ND 2.0 ug/L 2-Methylnaphthalene ND 0.20 ug/L Hexachlorocyclopenta- ND 10 ug/L diene 2,4,6-Trichloro- ND 5.0 ug/L phenol 2,4,5-Trichloro- ND 5.0 ug/L phenol 2-Chloronaphthalene ND 1.0 ug/L 2-Nitroaniline ND 2.0 ug/L Dimethyl phthalate ND 1.0 ug/L Acenaphthylene ND 0.20 ug/L	4-Chloroaniline	ND	2.0	ug/L
2-Methylnaphthalene ND 0.20 ug/L Hexachlorocyclopenta- diene 2,4,6-Trichloro- phenol 2,4,5-Trichloro- ND 5.0 ug/L phenol 2-Chloronaphthalene ND 1.0 ug/L 2-Nitroaniline ND 2.0 ug/L Dimethyl phthalate ND 1.0 ug/L Acenaphthylene ND 0.20 ug/L		ND	1.0	ug/L
Hexachlorocyclopenta- diene 2,4,6-Trichloro- phenol 2,4,5-Trichloro- phenol 2-Chloronaphthalene ND	4-Chloro-3-methylphenol	ND	2.0	ug/L
diene 2,4,6-Trichloro- phenol ND 5.0 ug/L 2,4,5-Trichloro- phenol ND 5.0 ug/L 2-Chloronaphthalene ND 1.0 ug/L 2-Nitroaniline ND 2.0 ug/L Dimethyl phthalate ND 1.0 ug/L Acenaphthylene ND 0.20 ug/L		ND	0.20	ug/L
2,4,6-Trichloro- phenol 2,4,5-Trichloro- phenol 2-Chloronaphthalene ND 1.0 2-Nitroaniline ND 2.0 Ug/L 2-Nitroaniline ND 1.0 Ug/L 2-Nitroaniline ND 0.20 Ug/L 0 Ug/L	Hexachlorocyclopenta-	ND	10	ug/L
phenol 2,4,5-Trichloro- phenol 2-Chloronaphthalene ND 1.0 ug/L 2-Nitroaniline ND 2.0 ug/L Dimethyl phthalate ND 1.0 ug/L 0.20 ug/L 0.20 ug/L				
2,4,5-Trichloro- phenol 2-Chloronaphthalene ND 1.0 ug/L 2-Nitroaniline ND 2.0 ug/L Dimethyl phthalate ND 1.0 ug/L 0.20 ug/L 0.20 ug/L	2,4,6-Trichloro-	ND	5.0	ug/L
phenol 2-Chloronaphthalene ND 1.0 ug/L 2-Nitroaniline ND 2.0 ug/L Dimethyl phthalate ND 1.0 ug/L Acenaphthylene ND 0.20 ug/L	-			
2-Chloronaphthalene ND 1.0 ug/L 2-Nitroaniline ND 2.0 ug/L Dimethyl phthalate ND 1.0 ug/L Acenaphthylene ND 0.20 ug/L		ND	5.0	ug/L
2-Nitroaniline ND 2.0 ug/L Dimethyl phthalate ND 1.0 ug/L Acenaphthylene ND 0.20 ug/L	-			
Dimethyl phthalate ND 1.0 ug/L Acenaphthylene ND 0.20 ug/L	-	ND		ug/L
Acenaphthylene ND 0.20 ug/L		ND	2.0	5
		ND	1.0	
2,6-Dinitrotoluene ND 5.0 ug/L		ND		
	2,6-Dinitrotoluene	ND	5.0	ug/L

Client Sample ID: MW-1 DUPLICATE

GC/MS Semivolatiles

Lot-Sample #...: A0K220421-002 Work Order #...: MAD322AJ Matrix.....: WG

PARAMETER RESULT			REPORTING	1
3-Nitroaniline	DARAMETER	PFCIII.T		
Acenaphthene				
2,4-Dinitrophenol				_
4-Nitrophenol ND				
Dibenzofuran				
2,4-Dinitrotoluene				
Diethyl phthalate				
## A-Chlorophenyl phenyl ether relucements Pluorene				
## Company				
Fluorene		ND	2.0	ug/L
## A-Nitroaniline		110	0.00	/=
A,6-Dinitro-				_
2-methylphenol N-Nitrosodiphenylamine ND 1.0 ug/L				
N-Nitrosodiphenylamine		ND	5.0	ug/L
### A-Bromophenyl phenyl ether ### Hexachlorobenzene Hexachlorophenol ND				
## Hexachlorobenzene				
Hexachlorobenzene ND		ND	2.0	ug/L
Pentachlorophenol ND 5.0 ug/L Phenanthrene ND 0.20 ug/L Anthracene ND 0.20 ug/L Carbazole ND 1.0 ug/L Di-n-butyl phthalate ND 1.0 ug/L Fluoranthene ND 0.20 ug/L Pyrene ND 0.20 ug/L Butyl benzyl phthalate ND 1.0 ug/L Benzo(a)anthracene ND 5.0 ug/L Chrysene ND 0.20 ug/L Dis(2-Ethylhexyl) ND 0.20 ug/L phthalate ND 0.20 ug/L Di-n-octyl phthalate ND 1.0 ug/L Benzo(b)fluoranthene ND 0.20 ug/L Benzo(k)fluoranthene ND 0.20 ug/L Benzo(a)pyrene ND 0.20 ug/L Indeno(1,2,3-cd)pyrene ND 0.20 ug/L Dibenz(a,h)anthracene ND <				
Phenanthrene	Hexachlorobenzene	ND	0.20	ug/L
Anthracene ND 0.20 ug/L Carbazole ND 1.0 ug/L Di-n-butyl phthalate ND 1.0 ug/L Fluoranthene ND 0.20 ug/L Pyrene ND 0.20 ug/L Butyl benzyl phthalate ND 1.0 ug/L Butyl benzyl phthalate ND 1.0 ug/L Butyl benzyl phthalate ND 1.0 ug/L Benzo(a) anthracene ND 0.20 ug/L Benzo(a) anthracene ND 0.20 ug/L Chrysene ND 0.20 ug/L bis(2-Ethylhexyl) ND 2.0 ug/L phthalate Di-n-octyl phthalate ND 1.0 ug/L Benzo(b) fluoranthene ND 0.20 ug/L Benzo(b) fluoranthene ND 0.20 ug/L Benzo(a) pyrene ND 0.20 ug/L Indeno(1,2,3-cd) pyrene ND 0.20 ug/L Dibenz(a,h) anthracene ND 0.20 ug/L Benzo(ghi) perylene ND 0.20 ug/L	Pentachlorophenol	ND	5.0	ug/L
Carbazole ND 1.0 ug/L Di-n-butyl phthalate ND 1.0 ug/L Fluoranthene ND 0.20 ug/L Pyrene ND 0.20 ug/L Butyl benzyl phthalate ND 1.0 ug/L Butyl benzyl phthalate ND 5.0 ug/L 3,3'-Dichlorobenzidine ND 0.20 ug/L Benzo(a) anthracene ND 0.20 ug/L Chrysene ND 0.20 ug/L Chrysene ND 0.20 ug/L bis(2-Ethylhexyl) ND 0.20 ug/L phthalate ND 0.20 ug/L phthalate ND 0.20 ug/L Benzo(b)fluoranthene ND 0.20 ug/L Benzo(k)fluoranthene ND 0.20 ug/L Benzo(a)pyrene ND 0.20 ug/L Indeno(1,2,3-cd)pyrene ND 0.20 ug/L Benzo(ghi)perylene ND	Phenanthrene	ND	0.20	ug/L
Di-n-butyl phthalate ND 1.0 ug/L Fluoranthene ND 0.20 ug/L Pyrene ND 0.20 ug/L Butyl benzyl phthalate ND 1.0 ug/L 3,3'-Dichlorobenzidine ND 5.0 ug/L Benzo(a)anthracene ND 0.20 ug/L Chrysene ND 0.20 ug/L bis(2-Ethylhexyl) ND 2.0 ug/L phthalate ND 1.0 ug/L phthalate ND 1.0 ug/L Benzo(b)fluoranthene ND 0.20 ug/L Benzo(k)fluoranthene ND 0.20 ug/L Benzo(a)pyrene ND 0.20 ug/L Indeno(1,2,3-cd)pyrene ND 0.20 ug/L Benzo(ghi)perylene ND 0.20 ug/L Benzo(ghi)perylene ND 0.20 ug/L SURROGATE RECOVERY LIMITS Nitrobenzene-d5 58 (27 - 111	Anthracene	ND	0.20	ug/L
Fluoranthene	Carbazole	ND	1.0	ug/L
Pyrene ND 0.20 ug/L Butyl benzyl phthalate ND 1.0 ug/L 3,3'-Dichlorobenzidine ND 5.0 ug/L Benzo(a)anthracene ND 0.20 ug/L Chrysene ND 0.20 ug/L bis(2-Ethylhexyl) ND 2.0 ug/L phthalate ND 1.0 ug/L phthalate ND 0.20 ug/L Benzo(b)fluoranthene ND 0.20 ug/L Benzo(k)fluoranthene ND 0.20 ug/L Benzo(a)pyrene ND 0.20 ug/L Indeno(1,2,3-cd)pyrene ND 0.20 ug/L Dibenz(a,h)anthracene ND 0.20 ug/L Benzo(ghi)perylene ND 0.20 ug/L SURROGATE RECOVERY LIMITS Nitrobenzene-d5 58 (27 - 111) 2-Fluorobiphenyl 57 (28 - 110) Terphenyl-d14 74 (37 - 119)	Di-n-butyl phthalate	ND	1.0	ug/L
Pyrene ND 0.20 ug/L Butyl benzyl phthalate ND 1.0 ug/L 3,3'-Dichlorobenzidine ND 5.0 ug/L Benzo(a)anthracene ND 0.20 ug/L Chrysene ND 0.20 ug/L bis(2-Ethylhexyl) ND 2.0 ug/L phthalate ND 1.0 ug/L Di-n-octyl phthalate ND 1.0 ug/L Benzo(b)fluoranthene ND 0.20 ug/L Benzo(k)fluoranthene ND 0.20 ug/L Benzo(a)pyrene ND 0.20 ug/L Indeno(1,2,3-cd)pyrene ND 0.20 ug/L Dibenz(a,h)anthracene ND 0.20 ug/L Benzo(ghi)perylene ND 0.20 ug/L SURROGATE RECOVERY LIMITS Nitrobenzene-d5 58 (27 - 111) 2-Fluorobiphenyl 57 (28 - 110) Terphenyl-d14 74 (37 - 119)	Fluoranthene	ND	0.20	ug/L
Butyl benzyl phthalate ND 1.0 ug/L 3,3'-Dichlorobenzidine ND 5.0 ug/L Benzo(a)anthracene ND 0.20 ug/L Chrysene ND 0.20 ug/L bis(2-Ethylhexyl) ND 2.0 ug/L phthalate ND 2.0 ug/L phthalate ND 0.20 ug/L Benzo(b)fluoranthene ND 0.20 ug/L Benzo(k)fluoranthene ND 0.20 ug/L Benzo(a)pyrene ND 0.20 ug/L Indeno(1,2,3-cd)pyrene ND 0.20 ug/L Dibenz(a,h)anthracene ND 0.20 ug/L Benzo(ghi)perylene ND 0.20 ug/L SURROGATE RECOVERY LIMITS Nitrobenzene-d5 58 (27 - 111) 2-Fluorobiphenyl 57 (28 - 110) Terphenyl-d14 74 (37 - 119) Phenol-d5 20 (10 - 110) 2-Flu	Pyrene	ND	0.20	
3,3'-Dichlorobenzidine ND 5.0 ug/L Benzo(a)anthracene ND 0.20 ug/L Chrysene ND 0.20 ug/L bis(2-Ethylhexyl) ND 2.0 ug/L phthalate ND 1.0 ug/L Di-n-octyl phthalate ND 0.20 ug/L Benzo(b)fluoranthene ND 0.20 ug/L Benzo(k)fluoranthene ND 0.20 ug/L Benzo(a)pyrene ND 0.20 ug/L Indeno(1,2,3-cd)pyrene ND 0.20 ug/L Dibenz(a,h)anthracene ND 0.20 ug/L Benzo(ghi)perylene ND 0.20 ug/L Benzo(ghi)perylene ND 0.20 ug/L SURROGATE RECOVERY LIMITS Nitrobenzene-d5 58 (27 - 111) 2-Fluorobiphenyl 57 (28 - 110) Terphenyl-d14 74 (37 - 119) Phenol-d5 20 (10 - 110) 2-Fluorophenol 36 (10 - 110)	Butyl benzyl phthalate	ND		
Benzo(a)anthracene ND 0.20 ug/L Chrysene ND 0.20 ug/L bis(2-Ethylhexyl) ND 2.0 ug/L phthalate ND 1.0 ug/L Benzo(b)fluoranthene ND 0.20 ug/L Benzo(k)fluoranthene ND 0.20 ug/L Benzo(a)pyrene ND 0.20 ug/L Indeno(1,2,3-cd)pyrene ND 0.20 ug/L Dibenz(a,h)anthracene ND 0.20 ug/L Benzo(ghi)perylene ND 0.20 ug/L SURROGATE RECOVERY LIMITS Nitrobenzene-d5 58 (27 - 111) 2-Fluorobiphenyl 57 (28 - 110) Terphenyl-d14 74 (37 - 119) Phenol-d5 20 (10 - 110) 2-Fluorophenol 36 (10 - 110)		ND		
Chrysene ND 0.20 ug/L bis(2-Ethylhexyl) ND 2.0 ug/L phthalate ND 1.0 ug/L Di-n-octyl phthalate ND 0.20 ug/L Benzo(b)fluoranthene ND 0.20 ug/L Benzo(k)fluoranthene ND 0.20 ug/L Benzo(a)pyrene ND 0.20 ug/L Indeno(1,2,3-cd)pyrene ND 0.20 ug/L Dibenz(a,h)anthracene ND 0.20 ug/L Benzo(ghi)perylene ND 0.20 ug/L SURROGATE RECOVERY LIMITS Nitrobenzene-d5 58 (27 - 111) 2-Fluorobiphenyl 57 (28 - 110) Terphenyl-d14 74 (37 - 119) Phenol-d5 20 (10 - 110) 2-Fluorophenol 36 (10 - 110)				
bis(2-Ethylhexyl) ND 2.0 ug/L phthalate ND 1.0 ug/L Benzo(b)fluoranthene ND 0.20 ug/L Benzo(k)fluoranthene ND 0.20 ug/L Benzo(a)pyrene ND 0.20 ug/L Indeno(1,2,3-cd)pyrene ND 0.20 ug/L Dibenz(a,h)anthracene ND 0.20 ug/L Benzo(ghi)perylene ND 0.20 ug/L PERCENT RECOVERY SURROGATE RECOVERY LIMITS Nitrobenzene-d5 58 (27 - 111) 2-Fluorobiphenyl 57 (28 - 110) Terphenyl-d14 74 (37 - 119) Phenol-d5 20 (10 - 110) 2-Fluorophenol 36 (10 - 110)				
phthalate ND 1.0 ug/L Benzo(b)fluoranthene ND 0.20 ug/L Benzo(k)fluoranthene ND 0.20 ug/L Benzo(a)pyrene ND 0.20 ug/L Indeno(1,2,3-cd)pyrene ND 0.20 ug/L Dibenz(a,h)anthracene ND 0.20 ug/L Benzo(ghi)perylene ND 0.20 ug/L SURROGATE RECOVERY LIMITS Nitrobenzene-d5 58 (27 - 111) 2-Fluorobiphenyl 57 (28 - 110) Terphenyl-d14 74 (37 - 119) Phenol-d5 20 (10 - 110) 2-Fluorophenol 36 (10 - 110)				
Di-n-octyl phthalate ND 1.0 ug/L Benzo(b)fluoranthene ND 0.20 ug/L Benzo(k)fluoranthene ND 0.20 ug/L Benzo(a)pyrene ND 0.20 ug/L Indeno(1,2,3-cd)pyrene ND 0.20 ug/L Dibenz(a,h)anthracene ND 0.20 ug/L Benzo(ghi)perylene ND 0.20 ug/L SURROGATE RECOVERY LIMITS Nitrobenzene-d5 58 (27 - 111) 2-Fluorobiphenyl 57 (28 - 110) Terphenyl-d14 74 (37 - 119) Phenol-d5 20 (10 - 110) 2-Fluorophenol 36 (10 - 110)			•	<i>-</i> -, —
Benzo(b)fluoranthene ND 0.20 ug/L Benzo(k)fluoranthene ND 0.20 ug/L Benzo(a)pyrene ND 0.20 ug/L Indeno(1,2,3-cd)pyrene ND 0.20 ug/L Dibenz(a,h)anthracene ND 0.20 ug/L Benzo(ghi)perylene ND 0.20 ug/L SURROGATE RECOVERY LIMITS Nitrobenzene-d5 58 (27 - 111) 2-Fluorobiphenyl 57 (28 - 110) Terphenyl-d14 74 (37 - 119) Phenol-d5 20 (10 - 110) 2-Fluorophenol 36 (10 - 110)		ND	1.0	11 a / T ₁
Benzo(k)fluoranthene ND 0.20 ug/L Benzo(a)pyrene ND 0.20 ug/L Indeno(1,2,3-cd)pyrene ND 0.20 ug/L Dibenz(a,h)anthracene ND 0.20 ug/L Benzo(ghi)perylene ND 0.20 ug/L PERCENT RECOVERY SURROGATE RECOVERY LIMITS Nitrobenzene-d5 58 (27 - 111) 2-Fluorobiphenyl 57 (28 - 110) Terphenyl-d14 74 (37 - 119) Phenol-d5 20 (10 - 110) 2-Fluorophenol 36 (10 - 110)				_
Benzo(a)pyrene ND 0.20 ug/L Indeno(1,2,3-cd)pyrene ND 0.20 ug/L Dibenz(a,h)anthracene ND 0.20 ug/L Benzo(ghi)perylene ND 0.20 ug/L PERCENT RECOVERY SURROGATE RECOVERY LIMITS Nitrobenzene-d5 58 (27 - 111) 2-Fluorobiphenyl 57 (28 - 110) Terphenyl-d14 74 (37 - 119) Phenol-d5 20 (10 - 110) 2-Fluorophenol 36 (10 - 110)				
Indeno(1,2,3-cd)pyrene ND 0.20 ug/L Dibenz(a,h)anthracene ND 0.20 ug/L Benzo(ghi)perylene ND 0.20 ug/L PERCENT RECOVERY SURROGATE RECOVERY LIMITS Nitrobenzene-d5 58 (27 - 111) 2-Fluorobiphenyl 57 (28 - 110) Terphenyl-d14 74 (37 - 119) Phenol-d5 20 (10 - 110) 2-Fluorophenol 36 (10 - 110)				
Dibenz(a,h)anthracene ND 0.20 ug/L Benzo(ghi)perylene ND 0.20 ug/L SURROGATE PERCENT RECOVERY LIMITS Nitrobenzene-d5 58 (27 - 111) 2-Fluorobiphenyl 57 (28 - 110) Terphenyl-d14 74 (37 - 119) Phenol-d5 20 (10 - 110) 2-Fluorophenol 36 (10 - 110)				
Benzo(ghi)perylene ND 0.20 ug/L PERCENT RECOVERY LIMITS Nitrobenzene-d5 58 (27 - 111) 2-Fluorobiphenyl 57 (28 - 110) Terphenyl-d14 74 (37 - 119) Phenol-d5 20 (10 - 110) 2-Fluorophenol 36 (10 - 110)				3.
PERCENT RECOVERY SURROGATE RECOVERY LIMITS Nitrobenzene-d5 58 (27 - 111) 2-Fluorobiphenyl 57 (28 - 110) Terphenyl-d14 74 (37 - 119) Phenol-d5 20 (10 - 110) 2-Fluorophenol 36 (10 - 110)				
SURROGATE RECOVERY LIMITS Nitrobenzene-d5 58 (27 - 111) 2-Fluorobiphenyl 57 (28 - 110) Terphenyl-d14 74 (37 - 119) Phenol-d5 20 (10 - 110) 2-Fluorophenol 36 (10 - 110)	Benzo(gni)perylene	ND	0.20	ug/ь
SURROGATE RECOVERY LIMITS Nitrobenzene-d5 58 (27 - 111) 2-Fluorobiphenyl 57 (28 - 110) Terphenyl-d14 74 (37 - 119) Phenol-d5 20 (10 - 110) 2-Fluorophenol 36 (10 - 110)		DED 6-1	D = 22	
Nitrobenzene-d5 58 (27 - 111) 2-Fluorobiphenyl 57 (28 - 110) Terphenyl-d14 74 (37 - 119) Phenol-d5 20 (10 - 110) 2-Fluorophenol 36 (10 - 110)				
2-Fluorobiphenyl 57 (28 - 110) Terphenyl-d14 74 (37 - 119) Phenol-d5 20 (10 - 110) 2-Fluorophenol 36 (10 - 110)				_
Terphenyl-d14 74 (37 - 119) Phenol-d5 20 (10 - 110) 2-Fluorophenol 36 (10 - 110)				
Phenol-d5 20 (10 - 110) 2-Fluorophenol 36 (10 - 110)				
2-Fluorophenol 36 (10 - 110)				
		20	(10 - 110)
2,4,6-Tribromophenol 69 (22 - 120)		36		
	2,4,6-Tribromophenol	69	(22 - 120)

MW-1 DUPLICATE

GC/MS Semivolatiles

Lot-Sample #: A0K220421-002 Work Order #: MAD322AJ Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED		RETENTION	Ī
PARAMETER	CAS #	RESULT		TIME	<u>UNITS</u>
Unknown		3.4 J	M	4.1357	ug/L
Unknown		1.3 J	M	5.4408	ug/L
Unknown Organic Acid		3.5 J	M	7.5481	ug/L
Unknown Organic Acid		1.1 J	M	7.6016	ug/L
NOTE(S):					

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-1 DUPLICATE

TOTAL Metals

Lot-Sample #...: A0K220421-002 **Matrix.....:** WG

Date Sampled...: 11/18/10 09:42 Date Received..: 11/20/10

PARAMETER	RESULT	REPORTING LIMIT	; UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #	• 0227012					
Arsenic	ND	10.0 Dilution Factor		SW846 6010B	11/23-11/29/10	MAD321AK
Lead	ND	3.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD321AL
Selenium	ND	5.0 Dilution Factor	_	SW846 6010B	11/23-11/29/10	MAD321AM
Thallium	ND	10.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD321AN
Antimony	ND	60.0 Dilution Factor	_	SW846 6010B	11/23-11/29/10	MAD321AP
Beryllium	ND	5.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD321AQ
Cadmium	ND	5.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD321AR
Chromium	ND	10.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD321AT
Copper	ND	25.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD321AU
Nickel	ND	40.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD321AV
Silver	ND	10.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD321AW
Zinc	ND	20.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD321AX
Mercury	ND	0.20 Dilution Factor	ug/L or: 1	SW846 7470A	11/23-11/24/10	MAD321AF

Client Sample ID: MW-1 DUPLICATE

DISSOLVED Metals

Lot-Sample #...: A0K220421-002 **Matrix.....:** WG

Date Sampled...: 11/18/10 09:42 Date Received..: 11/20/10

PARAMETER	RESULT	REPORTING LIMIT	; UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #	• 0227012					
Arsenic	ND	10.0 Dilution Factor		SW846 6010B	11/23-11/29/10	MAD321A0
Lead	ND	3.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD321A1
Selenium	ND	5.0 Dilution Factor	_	SW846 6010B	11/23-11/29/10	MAD321A2
Thallium	ND	10.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD321A3
Antimony	ND	60.0 Dilution Factor	_	SW846 6010B	11/23-11/29/10	MAD321A4
Beryllium	ND	5.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD321A5
Cadmium	ND	5.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD321A6
Chromium	ND	10.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD321A7
Copper	ND	25.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD321AA
Nickel	ND	40.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD321AC
Silver	ND	10.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD321AD
Zinc	ND	20.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD321AE
Mercury	ND	0.20 Dilution Factor	ug/L or: 1	SW846 7470A	11/23-11/24/10	MAD321AG

Client Sample ID: MW-7

GC/MS Volatiles

Lot-Sample #...: A0K220421-003 Work Order #...: MAD351AH Matrix.....: WG

Date Sampled...: 11/18/10 12:20 Date Received..: 11/20/10
Prep Date.....: 12/02/10 Analysis Date..: 12/02/10

Prep Batch #...: 0337199

Dilution Factor: 1 Method.....: SW846 8260B

PARAMETER			REPORTING	G
Acetone 25 10 ug/L Acetonitrile ND 20 ug/L Acrolein ND 20 ug/L Acrylonitrile ND 20 ug/L Allyl chloride ND 2.0 ug/L Benzene 1.9 1.0 ug/L Bromodichloromethane ND 1.0 ug/L Bromoform ND 1.0 ug/L Bromoform ND 1.0 ug/L Bromomethane ND 1.0 ug/L Bromomethane ND 1.0 ug/L Carbon disulfide ND 1.0 ug/L Carbon disulfide ND 1.0 ug/L Carbon disulfide ND 1.0 ug/L Chlorobenzene ND 1.0 ug/L Chloroform ND 1.0 ug/L Chloroform ND 1.0 ug/L Chloropene ND 1.0 ug/L Dibromochlor	PARAMETER	RESULT		
Acetonitrile Acrolein Acrolein Acrolein Acroloin ND 20 ug/L Acrylonitrile ND 20 ug/L Allyl chloride ND 20 ug/L Allyl chloride ND 20 ug/L Benzene 1.9 1.0 ug/L Bromodichloromethane ND 1.0 ug/L Bromoform ND 1.0 ug/L Bromomethane ND 1.0 ug/L Carbon disulfide ND 1.0 ug/L Carbon tetrachloride ND 1.0 ug/L Carbon tetrachloride ND 1.0 ug/L Chlorobenzene ND 1.0 ug/L Chlorothane ND 1.0 ug/L Chloroform ND 1.0 ug/L Chloroform ND 1.0 ug/L Chloromethane ND 1.0 ug/L Chlor	Acetone			
Acrylonitrile Allyl chloride ND Ally chloride ND All	Acetonitrile		20	-
Acrylonitrile Allyl chloride ND Ally chloride ND All	Acrolein	ND	20	ug/L
Allyl chloride Benzene 1.9 1.0 ug/L Bromodichloromethane ND 1.0 ug/L Bromoform ND 1.0 ug/L Bromoform ND 1.0 ug/L Bromomethane ND 1.0 ug/L Bromomethane ND 1.0 ug/L Carbon disulfide ND 1.0 ug/L Carbon disulfide ND 1.0 ug/L Carbon tetrachloride ND 1.0 ug/L Chlorobenzene ND 1.0 ug/L Chloroform ND 1.0 ug/L Chloroform ND 1.0 ug/L Chloromethane ND 1.0 ug/L Chloromethane ND 1.0 ug/L Chloromethane ND 1.0 ug/L Dibromochloromethane ND 1.0 ug/L Dibromoethane ND 1.0 ug/L Dibromomethane	Acrylonitrile	ND	20	ug/L
Benzene 1.9	Allyl chloride	ND	2.0	
Bromoform ND	Benzene	1.9	1.0	ug/L
Bromomethane	Bromodichloromethane	ND	1.0	ug/L
2-Butanone (MEK) 3.6 J 10 ug/L Carbon disulfide ND 1.0 ug/L Carbon tetrachloride ND 1.0 ug/L Chlorobenzene ND 1.0 ug/L Chlorobenzene ND 1.0 ug/L Chloroform ND 1.0 ug/L Chloromethane ND 1.0 ug/L Chloromethane ND 1.0 ug/L Chloromethane ND 1.0 ug/L Dibromochloromethane ND 1.0 ug/L 1,2-Dibromo-3-chloro- ND 1.0 ug/L 1,2-Dibromoethane (EDB) ND 1.0 ug/L 1,2-Dibromoethane (EDB) ND 1.0 ug/L 1,2-Dichloromethane ND 1.0 ug/L 1,1-Dichloromethane ND 1.0 ug/L 1,2-Dichloropethane ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,2-Dichloropropane	Bromoform	ND	1.0	ug/L
Carbon disulfide ND 1.0 ug/L Carbon tetrachloride ND 1.0 ug/L Chlorobenzene ND 1.0 ug/L Chloroethane ND 1.0 ug/L Chloroform ND 1.0 ug/L Chloroform ND 1.0 ug/L Chloromethane ND 1.0 ug/L Chloromethane ND 1.0 ug/L Chloromethane ND 1.0 ug/L Chloroprene ND 2.0 ug/L Dibromochloromethane ND 1.0 ug/L 1,2-Dibromo-3-chloro- ND 2.0 ug/L propane 1,2-Dibromoethane (EDB) ND 1.0 ug/L Dibromomethane ND 1.0 ug/L Dibromomethane ND 1.0 ug/L 1,1-Dichloro- ND 1.0 ug/L 2-butene Dichlorodifluoromethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L trans-1,2-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,4-Dioxane ND 1.0 ug/L Ethyl methacrylate ND 1.0 ug/L 2-Hexanone ND 1.0 ug/L Isobutyl alcohol ND 50 ug/L Isobutyl alcohol	Bromomethane	ND	1.0	ug/L
Carbon tetrachloride	2-Butanone (MEK)	3.6 J	10	ug/L
Chlorobenzene ND 1.0 ug/L Chloroethane ND 1.0 ug/L Chloroform ND 1.0 ug/L Chloroform ND 1.0 ug/L Chloromethane ND 1.0 ug/L Chloroprene ND 2.0 ug/L Chloroprene ND 2.0 ug/L Dibromochloromethane ND 1.0 ug/L 1,2-Dibromo-3-chloro- ND 2.0 ug/L propane 1,2-Dibromoethane (EDB) ND 1.0 ug/L Dibromomethane ND 1.0 ug/L Dibromomethane ND 1.0 ug/L C-2-butene ND 1.0 ug/L 1,1-Dichloro- ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethene ND 1.0 ug/L 1,2-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,4-Dioxane ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L 2-Hexanone ND 1.0 ug/L Isobutyl alcohol ND 50 ug/L	Carbon disulfide	ND	1.0	ug/L
Chloroethane Chloroform Chloroform ND 1.0 Ug/L Chloromethane ND 1.0 Ug/L Dibromochloromethane ND 1.0 Ug/L 1,2-Dibromo-3-chloro- ND 1.0 Ug/L Dibromomethane ND 1.0 Ug/L Dibromomethane ND 1.0 Ug/L Chloromethane ND 1.0 Ug/L Dibromomethane ND 1.0 Ug/L Chloromethane ND 1.0 Ug/L Chlorodifluoromethane ND 1.0 Ug/L Chlorochtane ND 1.0 Ug/L Chloroethane ND 1.0 Ug/L Chloroethane ND 1.0 Ug/L Chloropropene ND 1.0 Ug/L Chloropropane ND 1.0 Ug/L Chloropropane ND 1.0 Ug/L Chloropropane ND 1.0 Ug/L Chloropropane ND 1.0 Ug/L Chloromethane ND 1.0 Ug/L Chloropropane ND 1.0 Ug/L	Carbon tetrachloride	ND	1.0	ug/L
Chloroform ND 1.0 ug/L Chloromethane ND 1.0 ug/L Chloromethane ND 1.0 ug/L Dibromochloromethane ND 1.0 ug/L 1,2-Dibromo-3-chloro- ND 2.0 ug/L propane 1,2-Dibromoethane ND 1.0 ug/L Dibromomethane ND 1.0 ug/L Dibromomethane ND 1.0 ug/L Dibromomethane ND 1.0 ug/L Ctrans-1,4-Dichloro- ND 1.0 ug/L 2-butene Dichlorodifluoromethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethene ND 1.0 ug/L 1,2-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,4-Dioxane ND 1.0 ug/L Ctrans-1,3-Dichloropropene ND 1.0 ug/L Ctrans-1,3	Chlorobenzene	ND	1.0	ug/L
Chloromethane ND 1.0 ug/L Chloroprene ND 2.0 ug/L Dibromochloromethane ND 1.0 ug/L 1,2-Dibromo-3-chloro- ND 2.0 ug/L propane 1.2-Dibromoethane (EDB) ND 1.0 ug/L Dibromomethane (EDB) ND 1.0 ug/L Dibromomethane (EDB) ND 1.0 ug/L trans-1,4-Dichloro- ND 1.0 ug/L 2-butene ND 1.0 ug/L 1,1-Dichloroethane (ND) 1.0 ug/L 1,2-Dichloroethane (ND) 1.0 ug/L 1,1-Dichloroethene (ND) 1.0 ug/L 1,2-Dichloroethene (ND) 1.0 ug/L 1,2-Dichloropropane (ND) 1.0 ug/L 1,2-Dichloropropene (ND) 1.0 ug/L 1,4-Dioxane (ND) 1.0 ug/L Ethyl methacrylate (ND) 0.28 J 1.0 ug/L 2-Hexanone (ND) 1.0 ug/L ug/L	Chloroethane	ND	1.0	ug/L
Chloroprene ND 2.0 ug/L Dibromochloromethane ND 1.0 ug/L 1,2-Dibromo-3-chloro- ND 2.0 ug/L propane nD 1.0 ug/L 1,2-Dibromoethane (EDB) ND 1.0 ug/L Dibromomethane (EDB) ND 1.0 ug/L trans-1,4-Dichloro- ND 1.0 ug/L 2-butene Dichlorodifluoromethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,2-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,4-Dioxane ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Ethyl methacrylate 0.28 J 1.0 ug/L	Chloroform	ND	1.0	ug/L
Dibromochloromethane ND 1.0 ug/L 1,2-Dibromo-3-chloro- ND 2.0 ug/L propane 1,2-Dibromoethane (EDB) ND 1.0 ug/L Dibromomethane ND 1.0 ug/L trans-1,4-Dichloro- ND 1.0 ug/L 2-butene Dichlorodifluoromethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,2-Dichloroethene ND 1.0 ug/L trans-1,2-Dichloroethene ND 1.0 ug/L trans-1,2-Dichloropropane ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 2-Hexanone ND 1.0 ug/L Ethyl methacrylate 0.28 J 1.0 ug/L Iodomethane ND 1.0 ug/L Isobutyl alcohol ND 50 ug/L	Chloromethane	ND	1.0	ug/L
1,2-Dibromo-3-chloro- ND 2.0 ug/L propane 1,2-Dibromoethane (EDB) ND 1.0 ug/L Dibromomethane ND 1.0 ug/L trans-1,4-Dichloro- ND 1.0 ug/L 2-butene Dichlorodifluoromethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L trans-1,2-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,4-Dioxane ND 200 ug/L Ethylbenzene ND 1.0 ug/L Ethyl methacrylate 0.28 J 1.0 ug/L 2-Hexanone ND 1.0 ug/L Isobutyl alcohol ND 50 ug/L	Chloroprene	ND	2.0	ug/L
propane 1,2-Dibromoethane (EDB) ND 1.0 ug/L Dibromomethane ND 1.0 ug/L trans-1,4-Dichloro- ND 1.0 ug/L 2-butene Dichlorodifluoromethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethene ND 1.0 ug/L trans-1,2-Dichloroethene ND 1.0 ug/L trans-1,2-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L trans-1,4-Dioxane ND 200 ug/L Ethylbenzene ND 1.0 ug/L Ethyl methacrylate 0.28 J 1.0 ug/L Sethyl methacrylate ND 1.0 ug/L Iodomethane ND 1.0 ug/L Isobutyl alcohol ND 50 ug/L	Dibromochloromethane	ND	1.0	ug/L
1,2-Dibromoethane (EDB) ND 1.0 ug/L Dibromomethane ND 1.0 ug/L trans-1,4-Dichloro- ND 1.0 ug/L 2-butene ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L trans-1,2-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,4-Dioxane ND 200 ug/L Ethylbenzene ND 1.0 ug/L Ethyl methacrylate 0.28 J 1.0 ug/L 2-Hexanone ND 1.0 ug/L Isobutyl alcohol ND 50 ug/L	1,2-Dibromo-3-chloro-	ND	2.0	ug/L
Dibromomethane ND 1.0 ug/L trans-1,4-Dichloro- ND 1.0 ug/L 2-butene Dichlorodifluoromethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L trans-1,2-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,4-Dioxane ND 200 ug/L Ethylbenzene ND 1.0 ug/L Ethyl methacrylate 0.28 J 1.0 ug/L 2-Hexanone ND 1.0 ug/L Isobutyl alcohol ND 50 ug/L	propane			
trans-1,4-Dichloro- ND 1.0 ug/L 2-butene Dichlorodifluoromethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,2-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,4-Dioxane ND 200 ug/L Ethylbenzene ND 1.0 ug/L Ethyl methacrylate 0.28 J 1.0 ug/L 2-Hexanone ND 1.0 ug/L Iodomethane ND 1.0 ug/L Isobutyl alcohol ND 50 ug/L	1,2-Dibromoethane (EDB)	ND	1.0	ug/L
2-butene Dichlorodifluoromethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L trans-1,2-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 2-Hexanone ND 1.0 ug/L 2-Hexanone ND 1.0 ug/L Iodomethane ND 10 ug/L Isobutyl alcohol ND 50 ug/L	Dibromomethane	ND	1.0	ug/L
Dichlorodifluoromethane 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L trans-1,2-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L trans-1,4-Dioxane ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Ethyl methacrylate 0.28 J 1.0 ug/L 2-Hexanone ND 1.0 ug/L Iodomethane	trans-1,4-Dichloro-	ND	1.0	ug/L
1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L trans-1,2-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L trans-1,4-Dioxane ND 200 ug/L Ethylbenzene ND 1.0 ug/L Ethyl methacrylate 0.28 J 1.0 ug/L 2-Hexanone ND 10 ug/L Iodomethane ND 1.0 ug/L Isobutyl alcohol ND 50 ug/L	2-butene			
1,2-Dichloroethane ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L trans-1,2-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L trans-1,4-Dioxane ND 200 ug/L Ethylbenzene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Ethyl methacrylate 0.28 J 1.0 ug/L 2-Hexanone ND 10 ug/L Iodomethane ND 1.0 ug/L Isobutyl alcohol ND 50 ug/L	Dichlorodifluoromethane	ND	1.0	ug/L
1,1-Dichloroethene ND 1.0 ug/L trans-1,2-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,4-Dioxane ND 200 ug/L Ethylbenzene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Ethyl methacrylate 0.28 J 1.0 ug/L 2-Hexanone ND 10 ug/L Iodomethane ND 1.0 ug/L Isobutyl alcohol ND 50 ug/L	1,1-Dichloroethane	ND	1.0	ug/L
trans-1,2-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,4-Dioxane ND 200 ug/L Ethylbenzene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Ethyl methacrylate 0.28 J 1.0 ug/L 2-Hexanone ND 10 ug/L Iodomethane ND 1.0 ug/L Isobutyl alcohol ND 50 ug/L	1,2-Dichloroethane	ND	1.0	ug/L
1,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,4-Dioxane ND 200 ug/L Ethylbenzene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Ethyl methacrylate 0.28 J 1.0 ug/L 2-Hexanone ND 10 ug/L Iodomethane ND 1.0 ug/L Isobutyl alcohol ND 50 ug/L	1,1-Dichloroethene	ND	1.0	ug/L
cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,4-Dioxane ND 200 ug/L Ethylbenzene ND 1.0 ug/L Ethyl methacrylate 0.28 J 1.0 ug/L 2-Hexanone ND 10 ug/L Iodomethane ND 1.0 ug/L Isobutyl alcohol ND 50 ug/L	trans-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,3-Dichloropropene ND 1.0 ug/L 1,4-Dioxane ND 200 ug/L Ethylbenzene ND 1.0 ug/L Ethyl methacrylate 0.28 J 1.0 ug/L 2-Hexanone ND 10 ug/L Iodomethane ND 1.0 ug/L Isobutyl alcohol ND 50 ug/L	1,2-Dichloropropane	ND		ug/L
1,4-Dioxane ND 200 ug/L Ethylbenzene ND 1.0 ug/L Ethyl methacrylate 0.28 J 1.0 ug/L 2-Hexanone ND 10 ug/L Iodomethane ND 1.0 ug/L Isobutyl alcohol ND 50 ug/L	cis-1,3-Dichloropropene	ND	1.0	ug/L
Ethylbenzene ND 1.0 ug/L Ethyl methacrylate 0.28 J 1.0 ug/L 2-Hexanone ND 10 ug/L Iodomethane ND 1.0 ug/L Isobutyl alcohol ND 50 ug/L	trans-1,3-Dichloropropene	ND		ug/L
Ethyl methacrylate 0.28 J 1.0 ug/L 2-Hexanone ND 10 ug/L Iodomethane ND 1.0 ug/L Isobutyl alcohol ND 50 ug/L	1,4-Dioxane	ND	200	ug/L
2-Hexanone ND 10 ug/L Iodomethane ND 1.0 ug/L Isobutyl alcohol ND 50 ug/L	Ethylbenzene	ND	1.0	ug/L
IodomethaneND1.0ug/LIsobutyl alcoholND50ug/L	Ethyl methacrylate	0.28 J	1.0	ug/L
Isobutyl alcohol ND 50 ug/L	2-Hexanone	ND	10	ug/L
	Iodomethane	ND		ug/L
Methacrylonitrile ND 2.0 ug/L	Isobutyl alcohol	ND		ug/L
	Methacrylonitrile	ND	2.0	ug/L

Client Sample ID: MW-7

GC/MS Volatiles

Lot-Sample #...: A0K220421-003 Work Order #...: MAD351AH Matrix.....: WG

		REPORTING	
PARAMETER	RESULT	<u>LIMIT</u>	UNITS
Methylene chloride	ND	1.0	ug/L
Methyl methacrylate	ND	2.0	ug/L
4-Methyl-2-pentanone	3.4 J	10	ug/L
(MIBK)			
Propionitrile	ND	4.0	ug/L
Styrene	ND	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	0.20 J	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
Vinyl acetate	ND	2.0	ug/L
Vinyl chloride	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Dibromofluoromethane	98	(75 - 121)
1,2-Dichloroethane-d4	115	(63 - 129)
Toluene-d8	90	(74 - 115)
4-Bromofluorobenzene	86	(66 - 117)

J Estimated result. Result is less than RL.

MW-7

GC/MS Volatiles

Lot-Sample #: A0K220421-003 Work Order #: MAD351AH Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	1
PARAMETER	CAS #	RESULT	TIME	UNITS
1-Propene, 2-methyl-	115-11-7	2.7 NJ	M 1.6424	ug/L
Propanal, 2-methyl-	78-84-2	1.4 NJ	M 4.4173	ug/L
Unknown		1.2 J	M 8.0104	ug/L
Undecanol-3	6929-08-4	1.3 NJ	М 9.3386	ug/L
Unknown		3.6 J	М 9.6232	ug/L
Unknown		1.0 J	М 13.346	ug/L
Unknown		5.7 J	М 13.429	ug/L
Unknown		2.4 J	M 14.082	ug/L
tert-Butyl Alcohol		690	Q 3.943	ug/L
Ethyl Ether		2.7	Q 2.733	ug/L

 $[\]ensuremath{\mathsf{Q}}\xspace$ Result was quantitated against the response factor of a calibration standard.

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-7

GC/MS Semivolatiles

Lot-Sample #...: A0K220421-003 Work Order #...: MAD351AJ Matrix.....: WG

Date Sampled...: 11/18/10 12:20 Date Received..: 11/20/10 Prep Date....: 11/24/10 Analysis Date..: 12/03/10

Prep Batch #...: 0328034

Dilution Factor: 10 Method.....: SW846 8270C

		REPORTIN	G	
PARAMETER	RESULT	LIMIT	<u>UNITS</u>	
Phenol	ND	10	ug/L	
bis(2-Chloroethyl)-	ND	10	ug/L	
ether				
2-Chlorophenol	ND	10	ug/L	
1,3-Dichlorobenzene	ND	10	ug/L	
1,4-Dichlorobenzene	ND	10	ug/L	
1,2-Dichlorobenzene	ND	10	ug/L	
2-Methylphenol	ND	10	ug/L	
2,2'-oxybis(1-Chloro- propane)	ND	10	ug/L	
4-Methylphenol	ND	10	ug/L	
N-Nitrosodi-n-propyl-	ND	10	ug/L	
amine				
Hexachloroethane	ND	10	uq/L	
Nitrobenzene	ND	10	ug/L	
Isophorone	ND	10	ug/L	
2-Nitrophenol	ND	20	ug/L	
2,4-Dimethylphenol	ND	20	ug/L	
bis(2-Chloroethoxy)	ND	10	ug/L	
methane				
2,4-Dichlorophenol	ND	20	ug/L	
1,2,4-Trichloro-	ND	10	ug/L	
benzene				
Naphthalene	ND	2.0	ug/L	
4-Chloroaniline	ND	20	ug/L	
Hexachlorobutadiene	ND	10	ug/L	
4-Chloro-3-methylphenol	ND	20	ug/L	
2-Methylnaphthalene	ND	2.0	ug/L	
Hexachlorocyclopenta- diene	ND	100	ug/L	
2,4,6-Trichloro-	ND	50	ug/L	
phenol				
2,4,5-Trichloro-	ND	50	ug/L	
phenol				
2-Chloronaphthalene	ND	10	ug/L	
2-Nitroaniline	ND	20	ug/L	
Dimethyl phthalate	ND	10	ug/L	
Acenaphthylene	ND	2.0	ug/L	
2,6-Dinitrotoluene	ND	50	ug/L	

Client Sample ID: MW-7

GC/MS Semivolatiles

Lot-Sample #:	A0K220421-003	Work Order	# : MAD351AJT	Matrix:	WG
TOC-Pallibre #	AUNZZU4ZI-UU3	work order	H MADSSIAU	Matrix	wc

PARAMETER
3-Nitroaniline
2,4-Dinitrophenol
4-Nitrophenol ND 50 ug/L
Dibenzofuran
2,4-Dinitrotoluene
Diethyl phthalate ND 10 ug/L 4-Chlorophenyl phenyl ether ND 20 ug/L ether Fluorene ND 2.0 ug/L 4-Nitroaniline ND 20 ug/L 4-Boundine ND 10 ug/L 2-methylphenol ND 20 ug/L N-Nitrosodiphenylamine ND 10 ug/L 4-Bromophenyl phenyl ND 20 ug/L 4-Bromophenyl phenyl ND 20 ug/L ether ug/L Hexachlorobenzene ND 2.0 ug/L Pentachlorophenol ND 2.0 ug/L Phenanthrene ND 2.0 ug/L Anthracene ND 2.0 ug/L Carbazole ND 10 ug/L Di-n-butyl phthalate ND 2.0 ug/L Pyrene ND 2.0 ug/L <td< td=""></td<>
Chlorophenyl phenyl ether Fluorene
Student
Fluorene
4-Nitroaniline ND 20 ug/L 4,6-Dinitro-
4,6-Dinitro- 2-methylphenol N-Nitrosodiphenylamine A-Bromophenyl phenyl ether Hexachlorobenzene Hexachlorophenol ND D D D D D D D D D D D D D D D D D D
2-methylphenol N-Nitrosodiphenylamine ND 10 ug/L 4-Bromophenyl phenyl ether Hexachlorobenzene ND 2.0 ug/L Pentachlorophenol ND 50 ug/L Phenanthrene ND 2.0 ug/L Anthracene ND 2.0 ug/L Carbazole ND 10 ug/L Di-n-butyl phthalate ND 10 ug/L Fluoranthene ND 2.0 ug/L Pyrene ND 2.0 ug/L Butyl benzyl phthalate ND 10 ug/L Benzo(a)anthracene ND 2.0 ug/L Di-n-octyl phthalate ND 2.0 ug/L Di-n-octyl phthalate ND 2.0 ug/L Benzo(b)fluoranthene ND 2.0 ug/L
N-Nitrosodiphenylamine ND 10 ug/L 4-Bromophenyl phenyl ND 20 ug/L ether Hexachlorobenzene ND 2.0 ug/L Pentachlorophenol ND 50 ug/L Phenanthrene ND 2.0 ug/L Anthracene ND 10 ug/L Carbazole ND 10 ug/L Di-n-butyl phthalate ND 10 ug/L Fluoranthene ND 2.0 ug/L Pyrene ND 2.0 ug/L Butyl benzyl phthalate ND 10 ug/L 3,3'-Dichlorobenzidine ND 50 ug/L Benzo(a)anthracene ND 2.0 ug/L Chrysene ND 2.0 ug/L bis(2-Ethylhexyl) ND 20 ug/L bis(2-Ethylhexyl) ND 20 ug/L Benzo(b)fluoranthene ND 10 u
4-Bromophenyl phenyl etherND20ug/LHexachlorobenzeneND2.0ug/LPentachlorophenolND50ug/LPhenanthreneND2.0ug/LAnthraceneND2.0ug/LCarbazoleND10ug/LDi-n-butyl phthalateND10ug/LFluorantheneND2.0ug/LPyreneND2.0ug/LButyl benzyl phthalateND10ug/L3,3'-DichlorobenzidineND50ug/LBenzo(a)anthraceneND2.0ug/LChryseneND2.0ug/Lbis(2-Ethylhexyl)ND20ug/LphthalateND10ug/LDi-n-octyl phthalateND10ug/LBenzo(b)fluorantheneND10ug/L
The composition of the compo
Hexachlorobenzene ND 2.0 ug/L Pentachlorophenol ND 50 ug/L Phenanthrene ND 2.0 ug/L Anthracene ND 2.0 ug/L Carbazole ND 10 ug/L Di-n-butyl phthalate ND 10 ug/L Fluoranthene ND 2.0 ug/L Pyrene ND 2.0 ug/L Butyl benzyl phthalate ND 10 ug/L 3,3'-Dichlorobenzidine ND 50 ug/L Benzo(a)anthracene ND 2.0 ug/L Chrysene ND 2.0 ug/L bis(2-Ethylhexyl) ND 20 ug/L phthalate Di-n-octyl phthalate ND 10 ug/L Benzo(b)fluoranthene ND 2.0 ug/L
Pentachlorophenol ND 50 ug/L Phenanthrene ND 2.0 ug/L Anthracene ND 2.0 ug/L Carbazole ND 10 ug/L Di-n-butyl phthalate ND 10 ug/L Fluoranthene ND 2.0 ug/L Pyrene ND 2.0 ug/L Butyl benzyl phthalate ND 10 ug/L 3,3'-Dichlorobenzidine ND 50 ug/L Benzo(a)anthracene ND 2.0 ug/L Chrysene ND 2.0 ug/L bis(2-Ethylhexyl) ND 20 ug/L phthalate Di-n-octyl phthalate ND 10 ug/L Benzo(b)fluoranthene ND 2.0 ug/L
Phenanthrene ND 2.0 ug/L Anthracene ND 2.0 ug/L Carbazole ND 10 ug/L Di-n-butyl phthalate ND 10 ug/L Fluoranthene ND 2.0 ug/L Pyrene ND 2.0 ug/L Butyl benzyl phthalate ND 10 ug/L 3,3'-Dichlorobenzidine ND 50 ug/L Benzo(a)anthracene ND 2.0 ug/L Chrysene ND 2.0 ug/L Chrysene ND 2.0 ug/L Dis(2-Ethylhexyl) ND 2.0 ug/L phthalate Di-n-octyl phthalate ND 10 ug/L Benzo(b)fluoranthene ND 2.0 ug/L
Anthracene ND 2.0 ug/L Carbazole ND 10 ug/L Di-n-butyl phthalate ND 10 ug/L Fluoranthene ND 2.0 ug/L Pyrene ND 2.0 ug/L Butyl benzyl phthalate ND 10 ug/L 3,3'-Dichlorobenzidine ND 50 ug/L Benzo(a)anthracene ND 2.0 ug/L Chrysene ND 2.0 ug/L bis(2-Ethylhexyl) ND 2.0 ug/L phthalate Di-n-octyl phthalate ND 10 ug/L Benzo(b)fluoranthene ND 2.0 ug/L
Carbazole ND 10 ug/L Di-n-butyl phthalate ND 10 ug/L Fluoranthene ND 2.0 ug/L Pyrene ND 2.0 ug/L Butyl benzyl phthalate ND 10 ug/L 3,3'-Dichlorobenzidine ND 50 ug/L Benzo(a)anthracene ND 2.0 ug/L Chrysene ND 2.0 ug/L bis(2-Ethylhexyl) ND 20 ug/L phthalate Di-n-octyl phthalate ND 10 ug/L Benzo(b)fluoranthene ND 2.0 ug/L
Di-n-butyl phthalate ND 10 ug/L Fluoranthene ND 2.0 ug/L Pyrene ND 2.0 ug/L Butyl benzyl phthalate ND 10 ug/L 3,3'-Dichlorobenzidine ND 50 ug/L Benzo(a)anthracene ND 2.0 ug/L Chrysene ND 2.0 ug/L bis(2-Ethylhexyl) ND 20 ug/L phthalate Di-n-octyl phthalate ND 10 ug/L Benzo(b)fluoranthene ND 2.0 ug/L
Fluoranthene ND 2.0 ug/L Pyrene ND 2.0 ug/L Butyl benzyl phthalate ND 10 ug/L 3,3'-Dichlorobenzidine ND 50 ug/L Benzo(a)anthracene ND 2.0 ug/L Chrysene ND 2.0 ug/L bis(2-Ethylhexyl) ND 20 ug/L phthalate Di-n-octyl phthalate ND 10 ug/L Benzo(b)fluoranthene ND 2.0 ug/L
Pyrene ND 2.0 ug/L Butyl benzyl phthalate ND 10 ug/L 3,3'-Dichlorobenzidine ND 50 ug/L Benzo(a)anthracene ND 2.0 ug/L Chrysene ND 2.0 ug/L bis(2-Ethylhexyl) ND 20 ug/L phthalate Di-n-octyl phthalate ND 10 ug/L Benzo(b)fluoranthene ND 2.0 ug/L
Butyl benzyl phthalate ND 10 ug/L 3,3'-Dichlorobenzidine ND 50 ug/L Benzo(a)anthracene ND 2.0 ug/L Chrysene ND 2.0 ug/L bis(2-Ethylhexyl) ND 20 ug/L phthalate Di-n-octyl phthalate ND 10 ug/L Benzo(b)fluoranthene ND 2.0 ug/L
3,3'-Dichlorobenzidine ND 50 ug/L Benzo(a)anthracene ND 2.0 ug/L Chrysene ND 2.0 ug/L bis(2-Ethylhexyl) ND 20 ug/L phthalate Di-n-octyl phthalate ND 10 ug/L Benzo(b)fluoranthene ND 2.0 ug/L
Benzo(a)anthracene ND 2.0 ug/L Chrysene ND 2.0 ug/L bis(2-Ethylhexyl) ND 20 ug/L phthalate Di-n-octyl phthalate ND 10 ug/L Benzo(b)fluoranthene ND 2.0 ug/L
Chrysene ND 2.0 ug/L bis(2-Ethylhexyl) ND 20 ug/L phthalate Di-n-octyl phthalate ND 10 ug/L Benzo(b)fluoranthene ND 2.0 ug/L
bis(2-Ethylhexyl) ND 20 ug/L phthalate Di-n-octyl phthalate ND 10 ug/L Benzo(b)fluoranthene ND 2.0 ug/L
phthalate Di-n-octyl phthalate Benzo(b)fluoranthene ND 10 ug/L 2.0 ug/L
Di-n-octyl phthalate ND 10 ug/L Benzo(b)fluoranthene ND 2.0 ug/L
Benzo(b)fluoranthene ND 2.0 ug/L
-
Benzo(k)fluoranthene ND 2.0 ug/L
Benzo(a)pyrene ND 2.0 ug/L
Indeno(1,2,3-cd)pyrene ND 2.0 ug/L
Dibenz(a,h)anthracene ND 2.0 ug/L
Benzo(ghi)perylene ND 2.0 ug/L
PERCENT RECOVERY
SURROGATE RECOVERY LIMITS
Nitrobenzene-d5 55 DIL (27 - 111)
2-Fluorobiphenyl 54 DIL (28 - 110)
Terphenyl-d14 47 DIL (37 - 119)
Phenol-d5 56 DIL (10 - 110)
2-Fluorophenol 39 DIL (10 - 110)
2,4,6-Tribromophenol 68 DIL (22 - 120)

Client Sample ID: MW-7

GC/MS Semivolatiles

Lot-Sample #...: A0K220421-003 Work Order #...: MAD351AJ Matrix.....: WG

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

MW-7

GC/MS Semivolatiles

Lot-Sample #: A0K220421-003 Work Order #: MAD351AJ Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED		RETENTION	
PARAMETER	CAS #	RESULT		TIME	UNITS
Unknown		200 Ј	M	3.6874	ug/L
Unknown		58 J	M	4.0564	ug/L
Unknown		75 J	M	4.4522	ug/L
Unknown		120 J	M	4.5057	ug/L
Unknown		34 J	M	4.7571	ug/L
Unknown		22 J	M	5.062	ug/L
Unknown		16 J	M	5.0941	ug/L
Unknown		19 J	M	5.1476	ug/L
Unknown		200 J	M	5.3134	ug/L
Unknown		140 J	M	5.3508	ug/L
Unknown		89 J	M	5.4043	ug/L
Unknown		34 J	M	5.4685	ug/L
Unknown		43 J	M	5.5648	ug/L
Unknown		21 J	M	5.6289	ug/L
Unknown		78 J	M	5.6824	ug/L
Unknown		31 J	M	5.7145	ug/L
Unknown		32 J	M	5.7306	ug/L
Unknown		39 J	M	5.8161	ug/L
Unknown		41 J	M	5.8589	ug/L
Unknown		23 J	M	5.8857	ug/L
Unknown		40 J	M	5.9017	ug/L
Unknown		28 J	M	6.4205	ug/L
Unknown		130 J	M	7.1747	ug/L
Unknown		110 J	M	7.5651	ug/L
Unknown		55 J	M	9.0574	ug/L
NOTE (G)					

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-7

TOTAL Metals

Lot-Sample #...: A0K220421-003 **Matrix.....:** WG

Date Sampled...: 11/18/10 12:20 Date Received..: 11/20/10

PARAMETER	RESULT	REPORTING LIMIT		<u>METHOD</u>		PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Arsenic	: 0327012 99.7	10.0 Dilution Factor	ug/L or: 1	SW846 6	5010B	11/23-11/29/10	MAD351AK
Lead	ND	3.0 Dilution Factor	ug/L or: 1	SW846 6	5010B	11/23-11/29/10	MAD351AL
Selenium	ND	5.0 Dilution Factor	ug/L or: 1	SW846 6	5010B	11/23-11/29/10	MAD351AM
Thallium	ND	10.0 Dilution Factor	ug/L or: 1	SW846 6	5010B	11/23-11/29/10	MAD351AN
Antimony	ND	60.0 Dilution Facto	ug/L or: 1	SW846 6	5010B	11/23-11/29/10	MAD351AP
Beryllium	0.50 в	5.0 Dilution Factor	ug/L or: 1	SW846 6	5010В	11/23-11/29/10	MAD351AQ
Cadmium	ND	5.0 Dilution Facto	ug/L or: 1	SW846 6	5010B	11/23-11/29/10	MAD351AR
Chromium	ND	10.0 Dilution Facto	ug/L or: 1	SW846 6	5010B	11/23-11/29/10	MAD351AT
Copper	ND	25.0 Dilution Facto	ug/L or: 1	SW846 6	5010B	11/23-11/29/10	MAD351AU
Nickel	55.4	40.0 Dilution Factor	ug/L or: 1	SW846 6	5010B	11/23-11/29/10	MAD351AV
Silver	ND	10.0 Dilution Facto	ug/L or: 1	SW846 6	5010B	11/23-11/29/10	MAD351AW
Zinc	5.6 B,J	20.0 Dilution Factor	ug/L or: 1	SW846 6	5010в	11/23-11/29/10	MAD351AX
Mercury	ND	0.20 Dilution Factor	ug/L or: 1	SW846 7	7470A	11/23-11/24/10	MAD351AF
MOTE (C)							

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-7

DISSOLVED Metals

Lot-Sample #...: A0K220421-003 **Matrix.....:** WG

Date Sampled...: 11/18/10 12:20 Date Received..: 11/20/10

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Arsenic	: 0327012 75.7	10.0 Dilution Facto	_	SW846 6010B	11/23-11/29/10	MAD351A0
Lead	ND	3.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD351A1
Selenium	ND	5.0 Dilution Facto	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD351A2
Thallium	ND	10.0 Dilution Facto	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD351A3
Antimony	ND	60.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD351A4
Beryllium	ND	5.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD351A5
Cadmium	ND	5.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD351A6
Chromium	ND	10.0 Dilution Facto	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD351A7
Copper	ND	25.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD351AA
Nickel	52.9	40.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD351AC
Silver	ND	10.0 Dilution Facto	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD351AD
Zinc	ND	20.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD351AE
Mercury	ND	0.20 Dilution Facto	ug/L or: 1	SW846 7470A	11/23-11/24/10	MAD351AG

Client Sample ID: MW-3

GC/MS Volatiles

Lot-Sample #...: A0K220421-004 Work Order #...: MAD371AW Matrix.....: WG

Date Sampled...: 11/18/10 13:35 Date Received..: 11/20/10 Prep Date....: 12/02/10 Analysis Date..: 12/02/10

Prep Batch #...: 0337199

Dilution Factor: 1 Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acetone	3.8 J	10	ug/L
Acetonitrile	ND	20	ug/L
Acrolein	ND	20	ug/L
Acrylonitrile	ND	20	ug/L
Allyl chloride	ND	2.0	ug/L
Benzene	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	ug/L
2-Butanone (MEK)	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Chloroethane	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
Chloroprene	ND	2.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,2-Dibromo-3-chloro-	ND	2.0	ug/L
propane			
1,2-Dibromoethane (EDB)	ND	1.0	ug/L
Dibromomethane	ND	1.0	ug/L
trans-1,4-Dichloro-	ND	1.0	ug/L
2-butene			
Dichlorodifluoromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
1,4-Dioxane	ND	200	ug/L
Ethylbenzene	ND	1.0	ug/L
Ethyl methacrylate	ND	1.0	ug/L
2-Hexanone	ND	10	ug/L
Iodomethane	ND	1.0	ug/L
Isobutyl alcohol	ND	50	ug/L
Methacrylonitrile	ND	2.0	ug/L

Client Sample ID: MW-3

GC/MS Volatiles

Lot-Sample #...: A0K220421-004 Work Order #...: MAD371AW Matrix.....: WG

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Methylene chloride	ND	1.0	ug/L
Methyl methacrylate	ND	2.0	ug/L
4-Methyl-2-pentanone	ND	10	ug/L
(MIBK)			
Propionitrile	ND	4.0	ug/L
Styrene	ND	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
Vinyl acetate	ND	2.0	ug/L
Vinyl chloride	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	<u>RECOVERT</u> 101	(75 - 121	-
1,2-Dichloroethane-d4	110	(63 - 129	•
Toluene-d8	88	(74 - 115)	•
4-Bromofluorobenzene	83	(66 - 117)	•
4-PT OUIOT LUOT ODELIZEITE	03	(00 - 11/	J
NOTE(S):			

J Estimated result. Result is less than RL.

MW-3

GC/MS Volatiles

Lot-Sample #: A0K220421-004	Work Order #: MAD371AW	Matrix: WG
MASS SPECTROMETER/DATA SYSTEM	(MSDS) TENTATIVELY IDENTIFIED	COMPOUNDS
PARAMETER None	ESTIMATED CAS # RESULT	RETENTION TIME UNITS ug/L

Client Sample ID: MW-3

GC/MS Semivolatiles

Lot-Sample #...: A0K220421-004 Work Order #...: MAD371A1 Matrix.....: WG

Date Sampled...: 11/18/10 13:35 Date Received..: 11/20/10 Prep Date.....: 11/24/10 Analysis Date..: 12/03/10

Prep Batch #...: 0328034

Dilution Factor: 1 Method.....: SW846 8270C

		REPORTING	
PARAMETER	RESULT	LIMIT	<u>UNITS</u>
Phenol	ND	1.0	ug/L
bis(2-Chloroethyl)-	ND	1.0	ug/L
ether			
2-Chlorophenol	ND	1.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
2-Methylphenol	ND	1.0	ug/L
2,2'-oxybis(1-Chloro-	ND	1.0	ug/L
propane)			
4-Methylphenol	ND	1.0	ug/L
N-Nitrosodi-n-propyl-	ND	1.0	ug/L
amine			
Hexachloroethane	ND	1.0	ug/L
Nitrobenzene	ND	1.0	ug/L
Isophorone	ND	1.0	ug/L
2-Nitrophenol	ND	2.0	ug/L
2,4-Dimethylphenol	ND	2.0	ug/L
bis(2-Chloroethoxy)	ND	1.0	ug/L
methane			
2,4-Dichlorophenol	ND	2.0	ug/L
1,2,4-Trichloro-	ND	1.0	ug/L
benzene			
Naphthalene	ND	0.20	ug/L
4-Chloroaniline	ND	2.0	ug/L
Hexachlorobutadiene	ND	1.0	ug/L
4-Chloro-3-methylphenol	ND	2.0	ug/L
2-Methylnaphthalene	ND	0.20	ug/L
Hexachlorocyclopenta-	ND	10	ug/L
diene			
2,4,6-Trichloro-	ND	5.0	ug/L
phenol			
2,4,5-Trichloro-	ND	5.0	ug/L
phenol			
2-Chloronaphthalene	ND	1.0	ug/L
2-Nitroaniline	ND	2.0	ug/L
Dimethyl phthalate	ND	1.0	ug/L
Acenaphthylene	ND	0.20	ug/L
2,6-Dinitrotoluene	ND	5.0	ug/L

Client Sample ID: MW-3

GC/MS Semivolatiles

Lot-Sample #: A0K220421-004 Work Order #: MAD371A1 Matrix	. : 1	WG
---	-------	----

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
3-Nitroaniline	ND	2.0	ug/L
Acenaphthene	ND	0.20	ug/L
2,4-Dinitrophenol	ND	5.0	ug/L
4-Nitrophenol	ND	5.0	ug/L
Dibenzofuran	ND	1.0	ug/L
2,4-Dinitrotoluene	ND	5.0	ug/L
Diethyl phthalate	ND	1.0	ug/L
4-Chlorophenyl phenyl ether	ND	2.0	ug/L
Fluorene	ND	0.20	ug/L
4-Nitroaniline	ND	2.0	ug/L
4,6-Dinitro-	ND	5.0	ug/L
2-methylphenol			
N-Nitrosodiphenylamine	ND	1.0	ug/L
4-Bromophenyl phenyl	ND	2.0	ug/L
ether			
Hexachlorobenzene	ND	0.20	ug/L
Pentachlorophenol	ND	5.0	ug/L
Phenanthrene	ND	0.20	ug/L
Anthracene	ND	0.20	ug/L
Carbazole	ND	1.0	ug/L
Di-n-butyl phthalate	ND	1.0	ug/L
Fluoranthene	ND	0.20	ug/L
Pyrene	ND	0.20	ug/L
Butyl benzyl phthalate	ND	1.0	ug/L
3,3'-Dichlorobenzidine	ND	5.0	ug/L
Benzo(a)anthracene	ND	0.20	ug/L
Chrysene	ND	0.20	ug/L
bis(2-Ethylhexyl)	1.7 J,B	2.0	ug/L
phthalate			
Di-n-octyl phthalate	ND	1.0	ug/L
Benzo(b)fluoranthene	ND	0.20	ug/L
Benzo(k)fluoranthene	ND	0.20	ug/L
Benzo(a)pyrene	ND	0.20	ug/L
Indeno(1,2,3-cd)pyrene	ND	0.20	ug/L
Dibenz(a,h)anthracene	ND	0.20	ug/L
Benzo(ghi)perylene	ND	0.20	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Nitrobenzene-d5	46	(27 - 111)	
2-Fluorobiphenyl	47	(28 - 110)	
Terphenyl-d14	70	(37 - 119)	
Phenol-d5	49	(10 - 110)	
2-Fluorophenol	30	(10 - 110)	
2,4,6-Tribromophenol	64	(22 - 120)	

Client Sample ID: MW-3

GC/MS Semivolatiles

Lot-Sample #...: A0K220421-004 Work Order #...: MAD371A1 Matrix.....: WG

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

MW-3

GC/MS Semivolatiles

Lot-Sample #: A0K220421-004 Work Order #: MAD371A1 Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED		RETENTION	
PARAMETER	CAS #	RESULT		TIME	<u>UNITS</u>
Unknown		4.7 J	M	4.0564	ug/L
Unknown		24 J	M	4.4575	ug/L
Unknown		7.4 J	M	5.3133	ug/L
Unknown		4.6 J	M	5.3508	ug/L
Unknown		1.6 J	M	5.431	ug/L
Unknown		2.4 J	M	6.137	ug/L
Unknown		1.1 J	M	8.4423	ug/L
Unknown		1.2 J	M	9.0306	ug/L
Unknown		1.0 J	M	10.041	ug/L
Unknown		0.95 J	M	10.1	ug/L
NOTE(S):					

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-3

TOTAL Metals

Lot-Sample #...: A0K220421-004 **Matrix.....:** WG

Date Sampled...: 11/18/10 13:35 Date Received..: 11/20/10

PARAMETER	RESULT	REPORTING LIMIT	UNITS	<u>METHOI</u>)	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #	• 0327012						
Arsenic	ND	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD371A4
Lead	ND	3.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD371A7
Selenium	ND	5.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD371CA
Thallium	ND	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD371CE
Antimony	ND	60.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD371CH
Beryllium	0.50 в	5.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD371CL
Cadmium	ND	5.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD371CP
Chromium	ND	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD371CT
Copper	ND	25.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD371CW
Nickel	ND	40.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD371C1
Silver	ND	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD371C4
Zinc	ND	20.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD371C7
Mercury	ND	0.20 Dilution Fact	ug/L or: 1	SW846	7470A	11/23-11/24/10	MAD371AP
NOTE(S):							

NOTE(S):

B Estimated result. Result is less than RL.

Client Sample ID: MW-3

DISSOLVED Metals

Lot-Sample #...: A0K220421-004 **Matrix.....:** WG

Date Sampled...: 11/18/10 13:35 Date Received..: 11/20/10

		REPORTING				PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	<u>UNITS</u>	<u>METHO</u>	D	ANALYSIS DATE	ORDER #
Prep Batch #	.: 0327012						
Arsenic	ND	10.0	ug/L	SW846	6010B	11/23-11/29/10	MAD371DA
		Dilution Fact	or: 1				
_							
Lead	ND		ug/L	SW846	6010B	11/23-11/29/10	MAD371DE
		Dilution Fact	or: 1				
Selenium	ND	5.0	ug/L	SW846	6010B	11/23-11/29/10	MAD371DH
		Dilution Fact	2				
Thallium	ND	10.0	ug/L	SW846	6010B	11/23-11/29/10	MAD371DL
		Dilution Fact	or: 1				
Antimony	ND	60.0	uq/L	SW846	6010B	11/23-11/29/10	MAD371DD
rare raiony	ND	Dilution Fact	J .	50010	00101	11/23 11/25/10	141037101
Beryllium	0.46 B	5.0	ug/L	SW846	6010B	11/23-11/29/10	MAD371DT
		Dilution Fact	or: 1				
Cadmium	ND	5.0	uq/L	CMO16	6010B	11/23-11/29/10	марэяты
Cadilliulli	ND	Dilution Fact	2	SW040	9010B	11/23-11/29/10	MAD3/IDW
		Direction race	.01 - 1				
Chromium	ND	10.0	ug/L	SW846	6010B	11/23-11/29/10	MAD371D1
		Dilution Fact	or: 1				
_			,_	0.4.6	6040-		
Copper	ND	25.0	ug/L	SW846	6010B	11/23-11/29/10	MAD371AA
		Dilution Fact	or: 1				
Nickel	ND	40.0	ug/L	SW846	6010B	11/23-11/29/10	MAD371AE
		Dilution Fact	2			, - , - , -	
Silver	ND	10.0	ug/L	SW846	6010B	11/23-11/29/10	MAD371AH
		Dilution Fact	or: 1				
Zinc	ND	20.0	uq/L	SW846	6010B	11/23-11/29/10	ΜΔΠ371ΔΤ.
21110	ND	Dilution Fact	_	50010	00101	11/23 11/25/10	141037111
Mercury	ND	0.20	ug/L	SW846	7470A	11/23-11/24/10	MAD371AT
		Dilution Fact	or: 1				
MOTE (C) ·							
NOTE(S):							

B Estimated result. Result is less than RL.

Client Sample ID: RINSE BLANK #2

GC/MS Volatiles

Lot-Sample #...: A0K220421-005 Work Order #...: MAD391AH Matrix.....: WQ

Date Sampled...: 11/18/10 15:18 Date Received..: 11/20/10 Prep Date....: 12/02/10 Analysis Date..: 12/02/10

Prep Batch #...: 0337199

Dilution Factor: 1 Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND	10	ug/L
Acetonitrile	ND	20	ug/L
Acrolein	ND	20	ug/L
Acrylonitrile	ND	20	ug/L
Allyl chloride	ND	2.0	ug/L
Benzene	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	ug/L
2-Butanone (MEK)	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Chloroethane	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
Chloroprene	ND	2.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,2-Dibromo-3-chloro-	ND	2.0	ug/L
propane			
1,2-Dibromoethane (EDB)	ND	1.0	ug/L
Dibromomethane	ND	1.0	ug/L
trans-1,4-Dichloro-	ND	1.0	ug/L
2-butene			
Dichlorodifluoromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
1,4-Dioxane	ND	200	ug/L
Ethylbenzene	ND	1.0	ug/L
Ethyl methacrylate	ND	1.0	ug/L
2-Hexanone	ND	10	ug/L
Iodomethane	ND	1.0	ug/L
Isobutyl alcohol	ND	50	ug/L
Methacrylonitrile	ND	2.0	ug/L

Client Sample ID: RINSE BLANK #2

GC/MS Volatiles

Lot-Sample #...: A0K220421-005 Work Order #...: MAD391AH Matrix.....: WQ

		REPORTING	
PARAMETER	RESULT	LIMIT	<u>UNITS</u>
Methylene chloride	ND	1.0	ug/L
Methyl methacrylate	ND	2.0	ug/L
4-Methyl-2-pentanone	ND	10	ug/L
(MIBK)			
Propionitrile	ND	4.0	ug/L
Styrene	ND	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
Vinyl acetate	ND	2.0	ug/L
Vinyl chloride	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	-
Dibromofluoromethane	99	(75 - 121)	
1,2-Dichloroethane-d4	109	(63 - 129)	
Toluene-d8	89	(74 - 115)	
4-Bromofluorobenzene	85	(66 - 117)	

RINSE BLANK #2

GC/MS Volatiles

ug/L

Lot-Sample #: A0K220421-005	Work Order #: MAD391A	Matrix: WQ
MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDE	NTIFIED COMPOUNDS
PARAMETER	ESTI <u>Cas #</u> <u>RESU</u>	MATED RETENTION LT TIME UNITS

PARAMETER None

Client Sample ID: RINSE BLANK #2

GC/MS Semivolatiles

Lot-Sample #...: A0K220421-005 Work Order #...: MAD391AJ Matrix.....: WQ

Date Sampled...: 11/18/10 15:18 Date Received..: 11/20/10 Prep Date....: 11/24/10 Analysis Date..: 12/03/10

Prep Batch #...: 0328034

Dilution Factor: 1 Method.....: SW846 8270C

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Phenol	ND	1.0	ug/L
bis(2-Chloroethyl)-	ND	1.0	ug/L
ether			-5,
2-Chlorophenol	ND	1.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
2-Methylphenol	ND	1.0	ug/L
2,2'-oxybis(1-Chloro-	ND	1.0	ug/L
propane)			
4-Methylphenol	ND	1.0	ug/L
N-Nitrosodi-n-propyl-	ND	1.0	ug/L
amine			
Hexachloroethane	ND	1.0	ug/L
Nitrobenzene	ND	1.0	ug/L
Isophorone	ND	1.0	ug/L
2-Nitrophenol	ND	2.0	ug/L
2,4-Dimethylphenol	ND	2.0	ug/L
bis(2-Chloroethoxy)	ND	1.0	ug/L
methane			
2,4-Dichlorophenol	ND	2.0	ug/L
1,2,4-Trichloro-	ND	1.0	ug/L
benzene			
Naphthalene	ND	0.20	ug/L
4-Chloroaniline	ND	2.0	ug/L
Hexachlorobutadiene	ND	1.0	ug/L
4-Chloro-3-methylphenol	ND	2.0	ug/L
2-Methylnaphthalene	ND	0.20	ug/L
Hexachlorocyclopenta-	ND	10	ug/L
diene			
2,4,6-Trichloro-	ND	5.0	ug/L
phenol			
2,4,5-Trichloro-	ND	5.0	ug/L
phenol			
2-Chloronaphthalene	ND	1.0	ug/L
2-Nitroaniline	ND	2.0	ug/L
Dimethyl phthalate	ND	1.0	ug/L
Acenaphthylene	ND	0.20	ug/L
2,6-Dinitrotoluene	ND	5.0	ug/L

Client Sample ID: RINSE BLANK #2

GC/MS Semivolatiles

Lot-Sample #...: A0K220421-005 Work Order #...: MAD391AJ Matrix.....: WQ

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
3-Nitroaniline	ND	2.0	ug/L	
Acenaphthene	ND	0.20	ug/L ug/L	
2,4-Dinitrophenol	ND ND	5.0	ug/L ug/L	
4-Nitrophenol	ND ND	5.0	ug/L ug/L	
Dibenzofuran	ND ND	1.0	ug/L ug/L	
2,4-Dinitrotoluene	ND ND	5.0	ug/L ug/L	
Diethyl phthalate	ND ND	1.0	ug/L ug/L	
4-Chlorophenyl phenyl	ND ND	2.0	ug/L ug/L	
ether	IND	∠.∪	ид / п	
Fluorene	ND	0.20	ug/L	
4-Nitroaniline	ND ND	2.0	ug/L ug/L	
4.6-Dinitro-	ND ND	5.0	ug/L ug/L	
2-methylphenol	שועו	5.0	ug/ n	
	ИD	1 0	110 / T	
N-Nitrosodiphenylamine	ND ND	1.0	ug/L	
4-Bromophenyl phenyl ether	ND	2.0	ug/L	
Hexachlorobenzene	ИD	0.20	110 / T	
	ND ND		ug/L	
Pentachlorophenol Phenanthrene	ND ND	5.0	ug/L	
	ND ND	0.20 0.20	ug/L	
Anthracene	ND ND		ug/L	
Carbazole	ND ND	1.0	ug/L	
Di-n-butyl phthalate	ND	1.0	ug/L	
Fluoranthene	ND	0.20	ug/L	
Pyrene	ND	0.20	ug/L	
Butyl benzyl phthalate	ND	1.0	ug/L	
3,3'-Dichlorobenzidine	ND	5.0	ug/L	
Benzo(a)anthracene	ND	0.20	ug/L	
Chrysene	ND	0.20	ug/L	
bis(2-Ethylhexyl)	ND	2.0	ug/L	
phthalate	NTD	1 0	/T	
Di-n-octyl phthalate	ND	1.0	ug/L	
Benzo(b)fluoranthene	ND	0.20	ug/L	
Benzo(k)fluoranthene	ND	0.20	ug/L	
Benzo(a)pyrene	ND	0.20	ug/L	
Indeno(1,2,3-cd)pyrene	ND	0.20	ug/L	
Dibenz(a,h)anthracene	ND	0.20	ug/L	
Benzo(ghi)perylene	ND	0.20	ug/L	
	DEDCENE	DEGOTEST	7	
GUDD OG A TIT	PERCENT	RECOVERY	(
SURROGATE	RECOVERY	LIMITS	1)	
Nitrobenzene-d5	58	(27 - 11		
2-Fluorobiphenyl	59	(28 - 11		
Terphenyl-d14	74	(37 - 11		
Phenol-d5	51	(10 - 11		
2-Fluorophenol	18	(10 - 11	_0)	
0 4 6	C 1	/ 0 0 1 0	1(1)	

(22 - 120)

61

2,4,6-Tribromophenol

RINSE BLANK #2

GC/MS Semivolatiles

ug/L

Lot-Sample #: A0K220421-005	Work Order #: MAD	391AJ	Matrix: N	MQ
MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY	IDENTIFIED	COMPOUNDS	
PARAMETER		ESTIMATED RESULT	RETENTION TIME	UNITS

None

Client Sample ID: RINSE BLANK #2

TOTAL Metals

Lot-Sample #...: A0K220421-005 **Matrix**.....: WQ

Date Sampled...: 11/18/10 15:18 Date Received..: 11/20/10

PARAMETER	RESULT	REPORTING LIMIT	UNITS	<u>METHOI</u>)	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #	• 0327012						
Arsenic	ND	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD391AK
Lead	ND	3.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD391AL
Selenium	ND	5.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD391AM
Thallium	ND	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD391AN
Antimony	ND	60.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD391AP
Beryllium	0.49 в	5.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD391AQ
Cadmium	ND	5.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD391AR
Chromium	ND	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD391AT
Copper	ND	25.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD391AU
Nickel	ND	40.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD391AV
Silver	ND	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD391AW
Zinc	ND	20.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD391AX
Mercury	ND	0.20 Dilution Fact	ug/L or: 1	SW846	7470A	11/23-11/24/10	MAD391AF
NOTE(S):							

NOTE(S):

B Estimated result. Result is less than RL.

Client Sample ID: RINSE BLANK #2

DISSOLVED Metals

Lot-Sample #...: A0K220421-005 **Matrix**.....: WQ

Date Sampled...: 11/18/10 15:18 Date Received..: 11/20/10

PARAMETER	RESULT	REPORTING	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Arsenic	.: 0327012 ND	10.0 Dilution Fact	3 ·	SW846 6010B	11/23-11/29/10	MAD391A0
Lead	ND	3.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD391A1
Selenium	ND	5.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD391A2
Thallium	ND	10.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD391A3
Antimony	ND	60.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD391A4
Beryllium	ND	5.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD391A5
Cadmium	ND	5.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD391A6
Chromium	ND	10.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD391A7
Copper	ND	25.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD391AA
Nickel	ND	40.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD391AC
Silver	ND	10.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD391AD
Zinc	ND	20.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD391AE
Mercury	ND	0.20 Dilution Fact	ug/L or: 1	SW846 7470A	11/23-11/24/10	MAD391AG

Client Sample ID: MW-6

GC/MS Volatiles

Lot-Sample #...: A0K220421-006 Work Order #...: MAD4A1AH Matrix.....: WG

Date Sampled...: 11/18/10 16:11 Date Received..: 11/20/10
Prep Date.....: 12/02/10 Analysis Date..: 12/02/10

Prep Batch #...: 0337199

Dilution Factor: 4 Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acetone	230	40	ug/L
Acetonitrile	ND	80	ug/L
Acrolein	ND	80	ug/L
Acrylonitrile	ND	80	ug/L
Allyl chloride	ND	8.0	ug/L
Benzene	ND	4.0	ug/L
Bromodichloromethane	ND	4.0	ug/L
Bromoform	ND	4.0	ug/L
Bromomethane	ND	4.0	ug/L
2-Butanone (MEK)	8.0 J	40	ug/L
Carbon disulfide	ND	4.0	ug/L
Carbon tetrachloride	ND	4.0	ug/L
Chlorobenzene	ND	4.0	ug/L
Chloroethane	ND	4.0	ug/L
Chloroform	ND	4.0	ug/L
Chloromethane	ND	4.0	ug/L
Chloroprene	ND	8.0	ug/L
Dibromochloromethane	ND	4.0	ug/L
1,2-Dibromo-3-chloro-	ND	8.0	ug/L
propane			
1,2-Dibromoethane (EDB)	ND	4.0	ug/L
Dibromomethane	ND	4.0	ug/L
trans-1,4-Dichloro-	ND	4.0	ug/L
2-butene			
Dichlorodifluoromethane	ND	4.0	ug/L
1,1-Dichloroethane	ND	4.0	ug/L
1,2-Dichloroethane	ND	4.0	ug/L
1,1-Dichloroethene	ND	4.0	ug/L
trans-1,2-Dichloroethene	ND	4.0	ug/L
1,2-Dichloropropane	ND	4.0	ug/L
cis-1,3-Dichloropropene	ND	4.0	ug/L
trans-1,3-Dichloropropene	ND	4.0	ug/L
1,4-Dioxane	ND	800	ug/L
Ethylbenzene	ND	4.0	ug/L
Ethyl methacrylate	ND	4.0	ug/L
2-Hexanone	ND	40	ug/L
Iodomethane	ND	4.0	ug/L
Isobutyl alcohol	ND	200	ug/L
Methacrylonitrile	ND	8.0	ug/L

Client Sample ID: MW-6

GC/MS Volatiles

Lot-Sample #...: A0K220421-006 Work Order #...: MAD4A1AH Matrix.....: WG

		REPORTING	
PARAMETER	RESULT	LIMIT	<u>UNITS</u>
Methylene chloride	ND	4.0	ug/L
Methyl methacrylate	ND	8.0	ug/L
4-Methyl-2-pentanone	ND	40	ug/L
(MIBK)			
Propionitrile	ND	16	ug/L
Styrene	ND	4.0	ug/L
1,1,1,2-Tetrachloroethane	ND	4.0	ug/L
1,1,2,2-Tetrachloroethane	ND	4.0	ug/L
Tetrachloroethene	ND	4.0	ug/L
Toluene	ND	4.0	ug/L
1,1,1-Trichloroethane	ND	4.0	ug/L
1,1,2-Trichloroethane	ND	4.0	ug/L
Trichloroethene	ND	4.0	ug/L
Trichlorofluoromethane	ND	4.0	ug/L
1,2,3-Trichloropropane	ND	4.0	ug/L
Vinyl acetate	ND	8.0	ug/L
Vinyl chloride	ND	4.0	ug/L
Xylenes (total)	ND	8.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Dibromofluoromethane	100	(75 - 121))
1,2-Dichloroethane-d4	112	(63 - 129))
Toluene-d8	90	(74 - 115))
4-Bromofluorobenzene	85	(66 - 117))

NOTE(S):

J Estimated result. Result is less than RL.

MW-6

GC/MS Volatiles

Lot-Sample #: A0K220421-006 Work Order #: MAD4A1AH Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

PARAMETER	CAS #	ESTIMATED RESULT		RETENTION TIME	N UNITS
Unknown		13 J	M	1.6543	ug/L
Unknown		6.8 J	Μ	11.33	ug/L

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-6

GC/MS Semivolatiles

Lot-Sample #...: A0K220421-006 Work Order #...: MAD4A1AJ Matrix.....: WG

Date Sampled...: 11/18/10 16:11 Date Received..: 11/20/10 Prep Date....: 11/24/10 Analysis Date..: 12/03/10

Prep Batch #...: 0328034

Dilution Factor: 4 Method.....: SW846 8270C

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Phenol	ND	4.0	ug/L
bis(2-Chloroethyl)-	ND	4.0	ug/L
ether			3.
2-Chlorophenol	ND	4.0	ug/L
1,3-Dichlorobenzene	ND	4.0	ug/L
1,4-Dichlorobenzene	ND	4.0	ug/L
1,2-Dichlorobenzene	ND	4.0	ug/L
2-Methylphenol	ND	4.0	ug/L
2,2'-oxybis(1-Chloro-	ND	4.0	ug/L
propane)			
4-Methylphenol	ND	4.0	ug/L
N-Nitrosodi-n-propyl-	ND	4.0	ug/L
amine			
Hexachloroethane	ND	4.0	ug/L
Nitrobenzene	ND	4.0	ug/L
Isophorone	ND	4.0	ug/L
2-Nitrophenol	ND	8.0	ug/L
2,4-Dimethylphenol	ND	8.0	ug/L
bis(2-Chloroethoxy)	ND	4.0	ug/L
methane			
2,4-Dichlorophenol	ND	8.0	ug/L
1,2,4-Trichloro-	ND	4.0	ug/L
benzene			
Naphthalene	ND	0.80	ug/L
4-Chloroaniline	ND	8.0	ug/L
Hexachlorobutadiene	ND	4.0	ug/L
4-Chloro-3-methylphenol	ND	8.0	ug/L
2-Methylnaphthalene	ND	0.80	ug/L
Hexachlorocyclopenta-	ND	40	ug/L
diene			
2,4,6-Trichloro-	ND	20	ug/L
phenol			
2,4,5-Trichloro-	ND	20	ug/L
phenol			
2-Chloronaphthalene	ND	4.0	ug/L
2-Nitroaniline	ND	8.0	ug/L
Dimethyl phthalate	ND	4.0	ug/L
Acenaphthylene	ND	0.80	ug/L
2,6-Dinitrotoluene	ND	20	ug/L

Client Sample ID: MW-6

GC/MS Semivolatiles

Lot-Sample #:	A0K220421-006	Work Order	# : MAD4A1A.T	Matrix	: WG
TOU DAMPTE #	AUNZZUTZI UUU	MOTV OTGET	# • • • • PIADIAIAU	Mactin	· WG

	REPORTING		
PARAMETER RESULT	LIMIT	UNITS	
3-Nitroaniline ND	8.0	ug/L	
Acenaphthene ND	0.80	ug/L	
2,4-Dinitrophenol ND	20	ug/L	
4-Nitrophenol ND	20	ug/L	
Dibenzofuran ND	4.0	ug/L	
2,4-Dinitrotoluene ND	20	ug/L	
Diethyl phthalate ND	4.0	ug/L	
4-Chlorophenyl phenyl ND	8.0	ug/L	
ether		∝ ∃, =	
Fluorene ND	0.80	ug/L	
4-Nitroaniline ND	8.0	ug/L	
4,6-Dinitro- ND	20	ug/L	
2-methylphenol	20	ч9/ п	
N-Nitrosodiphenylamine ND	4.0	ug/L	
4-Bromophenyl phenyl ND	8.0	ug/L ug/L	
ether	0.0	и9/ ц	
Hexachlorobenzene ND	0.80	ug/L	
Pentachlorophenol ND	20	ug/L ug/L	
Phenanthrene ND	0.80		
Anthracene ND	0.80	ug/L	
		ug/L	
	4.0	ug/L	
Di-n-butyl phthalate ND	4.0	ug/L	
Fluoranthene ND	0.80	ug/L	
Pyrene ND	0.80	ug/L	
Butyl benzyl phthalate ND	4.0	ug/L	
3,3'-Dichlorobenzidine ND	20	ug/L	
Benzo(a)anthracene ND	0.80	ug/L	
Chrysene ND	0.80	ug/L	
bis(2-Ethylhexyl) ND	8.0	ug/L	
phthalate			
Di-n-octyl phthalate ND	4.0	ug/L	
Benzo(b)fluoranthene ND	0.80	ug/L	
Benzo(k)fluoranthene ND	0.80	ug/L	
Benzo(a)pyrene ND	0.80	ug/L	
Indeno(1,2,3-cd)pyrene ND	0.80	ug/L	
Dibenz(a,h)anthracene ND	0.80	ug/L	
Benzo(ghi)perylene ND	0.80	ug/L	
PERCENT	RECOVERY		
<u>SURROGATE</u> <u>RECOVERY</u>	LIMITS		
Nitrobenzene-d5 44 DIL	(27 - 111		
2-Fluorobiphenyl 48 DIL	(28 - 110)	
Terphenyl-d14 52 DIL	(37 - 119)	
Phenol-d5 50 DIL	(10 - 110)	
2-Fluorophenol 36 DIL	(10 - 110)	
2,4,6-Tribromophenol 66 DIL	(22 - 120)	

Client Sample ID: MW-6

GC/MS Semivolatiles

Lot-Sample #...: A0K220421-006 Work Order #...: MAD4A1AJ Matrix.....: WG

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

MW-6

GC/MS Semivolatiles

Lot-Sample #: A0K220421-006 Work Order #: MAD4A1AJ Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATE	O RETEI	NTION
PARAMETER	CAS #	RESULT	TIME	<u>UNITS</u>
Unknown		29 J	M 4.409	94 ug/L
Unknown		26 J	M 4.59	12 ug/L
Unknown		49 J	M 5.33	47 ug/L
Unknown		57 J	M 5.35	07 ug/L
Unknown		30 J	M 5.618	32 ug/L
Unknown		34 J	M 5.67	7 ug/L
Unknown		22 J	M 5.70	91 ug/L
Unknown		38 J	M 5.74	l2 ug/L
Unknown		24 J	M 5.81	61 ug/L
Unknown		53 J	M 6.13	7 ug/L
Unknown		25 J	M 6.17	98 ug/L
Unknown		39 J	м 6.45	26 ug/L
Unknown		28 J	M 6.52	21 ug/L
Unknown		40 J	м 6.54	35 ug/L
Unknown		22 J	M 6.55	95 ug/L
Unknown		55 J	M 6.61	3 ug/L
Unknown		49 J	M 6.76	31 ug/L
Unknown		21 J	M 6.82	7 ug/L
Unknown		25 J	M 7.308	33 ug/L
Unknown		410 J	M 7.58	65 ug/L
Unknown		25 J	M 8.14	27 ug/L
Unknown		29 J	M 8.29	78 ug/L
Unknown		57 J	M 8.31	39 ug/L
Unknown		24 J	M 8.49	57 ug/L
Unknown		360 J	M 9.05	73 ug/L
NOTE(S):				

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-6

TOTAL Metals

Lot-Sample #...: A0K220421-006 **Matrix.....:** WG

Date Sampled...: 11/18/10 16:11 Date Received..: 11/20/10

PARAMETER	RESULT	REPORTING LIMIT		METHO:	D	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Arsenic	31.3	10.0 Dilution Fact	ug/L	SW846	6010B	11/23-11/29/10	MAD4A1AK
Lead	ND		ug/L	SW846	6010B	11/23-11/29/10	MAD4A1AL
Selenium	ND	5.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4A1AM
Thallium	ND	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4A1AN
Antimony	4.8 B	60.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4A1AP
Beryllium	0.57 в	5.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4A1AQ
Cadmium	ND	5.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4A1AR
Chromium	ND	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4A1AT
Copper	ND	25.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4A1AU
Nickel	11.4 В	40.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4A1AV
Silver	ND	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4A1AW
Zinc	ND	20.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4A1AX
Mercury	ND	0.20 Dilution Fact	ug/L or: 1	SW846	7470A	11/23-11/24/10	MAD4A1AF
NOTE(S):							

B Estimated result. Result is less than RL.

Client Sample ID: MW-6

DISSOLVED Metals

Lot-Sample #...: A0K220421-006 **Matrix.....:** WG

Date Sampled...: 11/18/10 16:11 Date Received..: 11/20/10

PARAMETER	RESULT	REPORTING LIMIT		METHO!	D	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Arsenic	.: 0327012 30.7	10.0 Dilution Fact	ug/L	SW846	6010B	11/23-11/29/10	MAD4A1A0
Lead	ND		ug/L	SW846	6010B	11/23-11/29/10	MAD4A1A1
Selenium	ND	5.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4A1A2
Thallium	ND	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4A1A3
Antimony	ND	60.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4A1A4
Beryllium	0.55 в	5.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4A1A5
Cadmium	ND	5.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4A1A6
Chromium	ND	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4A1A7
Copper	ND	25.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4A1AA
Nickel	9.6 в	40.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4A1AC
Silver	ND	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4A1AD
Zinc	ND	20.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4A1AE
Mercury	ND	0.20 Dilution Fact	ug/L or: 1	SW846	7470A	11/23-11/24/10	MAD4A1AG
NOTE(S):							

B Estimated result. Result is less than RL.

Client Sample ID: MW-4

GC/MS Volatiles

Lot-Sample #...: A0K220421-007 Work Order #...: MAD4D1AH Matrix.....: WG

Date Sampled...: 11/18/10 17:00 Date Received..: 11/20/10 Prep Date....: 12/02/10 Analysis Date..: 12/02/10

Prep Batch #...: 0337199

Dilution Factor: 1 Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acetone	3.3 J	10	ug/L
Acetonitrile	ND	20	ug/L
Acrolein	ND	20	ug/L
Acrylonitrile	ND	20	ug/L
Allyl chloride	ND	2.0	ug/L
Benzene	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	ug/L
2-Butanone (MEK)	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Chloroethane	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
Chloroprene	ND	2.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,2-Dibromo-3-chloro-	ND	2.0	ug/L
propane			
1,2-Dibromoethane (EDB)	ND	1.0	ug/L
Dibromomethane	ND	1.0	ug/L
trans-1,4-Dichloro-	ND	1.0	ug/L
2-butene			
Dichlorodifluoromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
1,4-Dioxane	ND	200	ug/L
Ethylbenzene	ND	1.0	ug/L
Ethyl methacrylate	ND	1.0	ug/L
2-Hexanone	ND	10	ug/L
Iodomethane	ND	1.0	ug/L
Isobutyl alcohol	ND	50	ug/L
Methacrylonitrile	ND	2.0	ug/L

Client Sample ID: MW-4

GC/MS Volatiles

Lot-Sample #...: A0K220421-007 Work Order #...: MAD4D1AH Matrix.....: WG

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Methylene chloride	ND	1.0	ug/L
Methyl methacrylate	ND	2.0	ug/L
4-Methyl-2-pentanone	ND	10	ug/L
(MIBK)			
Propionitrile	ND	4.0	ug/L
Styrene	ND	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
Vinyl acetate	ND	2.0	ug/L
Vinyl chloride	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Dibromofluoromethane	97	(75 - 121)	
1,2-Dichloroethane-d4	110	(63 - 129))
Toluene-d8	90	(74 - 115))
4-Bromofluorobenzene	85	(66 - 117))
NOTE(S):			

J Estimated result. Result is less than RL.

MW-4

GC/MS Volatiles

Lot-Sample #: A0K220421-007	Work Order #: MAD4D1AH	Matrix: WG
MASS SPECTROMETER/DATA SYSTEM ((MSDS) TENTATIVELY IDENTIFIE	D COMPOUNDS
PARAMETER None	ESTIMATED CAS # RESULT	RETENTION TIME UNITS ug/L

Client Sample ID: MW-4

GC/MS Semivolatiles

Lot-Sample #...: A0K220421-007 Work Order #...: MAD4D1AJ Matrix.....: WG

Date Sampled...: 11/18/10 17:00 Date Received..: 11/20/10 Prep Date....: 11/24/10 Analysis Date..: 12/03/10

Prep Batch #...: 0328034

Dilution Factor: 4 Method.....: SW846 8270C

		REPORTIN	REPORTING		
PARAMETER	RESULT	LIMIT	UNITS		
Phenol	ND	4.0	ug/L		
bis(2-Chloroethyl)-	ND	4.0	ug/L		
ether			3,		
2-Chlorophenol	ND	4.0	ug/L		
1,3-Dichlorobenzene	ND	4.0	ug/L		
1,4-Dichlorobenzene	ND	4.0	ug/L		
1,2-Dichlorobenzene	ND	4.0	ug/L		
2-Methylphenol	ND	4.0	ug/L		
2,2'-oxybis(1-Chloro- propane)	ND	4.0	ug/L		
4-Methylphenol	ND	4.0	ug/L		
N-Nitrosodi-n-propyl-	ND	4.0	ug/L		
amine					
Hexachloroethane	ND	4.0	ug/L		
Nitrobenzene	ND	4.0	ug/L		
Isophorone	ND	4.0	ug/L		
2-Nitrophenol	ND	8.0	ug/L		
2,4-Dimethylphenol	ND	8.0	ug/L		
bis(2-Chloroethoxy)	ND	4.0	ug/L		
methane					
2,4-Dichlorophenol	ND	8.0	ug/L		
1,2,4-Trichloro-	ND	4.0	ug/L		
benzene					
Naphthalene	ND	0.80	ug/L		
4-Chloroaniline	ND	8.0	ug/L		
Hexachlorobutadiene	ND	4.0	ug/L		
4-Chloro-3-methylphenol	ND	8.0	ug/L		
2-Methylnaphthalene	ND	0.80	ug/L		
Hexachlorocyclopenta-	ND	40	ug/L		
diene					
2,4,6-Trichloro-	ND	20	ug/L		
phenol					
2,4,5-Trichloro-	ND	20	ug/L		
phenol					
2-Chloronaphthalene	ND	4.0	ug/L		
2-Nitroaniline	ND	8.0	ug/L		
Dimethyl phthalate	ND	4.0	ug/L		
Acenaphthylene	ND	0.80	ug/L		
2,6-Dinitrotoluene	ND	20	ug/L		

Client Sample ID: MW-4

GC/MS Semivolatiles

Lot-Sample #: A0K220421-007	Work Order #: MAD4D1AJ	Matrix WG
------------------------------------	------------------------	-----------

		REPORTING	7
PARAMETER	RESULT	LIMIT	UNITS
3-Nitroaniline	ND	8.0	ug/L
Acenaphthene	ND	0.80	ug/L
2,4-Dinitrophenol	ND	20	ug/L
4-Nitrophenol	ND	20	ug/L
Dibenzofuran	ND	4.0	ug/L
2,4-Dinitrotoluene	ND	20	ug/L
Diethyl phthalate	ND	4.0	ug/L
4-Chlorophenyl phenyl	ND	8.0	ug/L
ether	112	0.0	W5/ 1
Fluorene	ND	0.80	ug/L
4-Nitroaniline	ND	8.0	ug/L
4,6-Dinitro-	ND	20	ug/L
2-methylphenol	IND	20	ug/ L
N-Nitrosodiphenylamine	ND	4.0	110 /T.
4-Bromophenyl phenyl		8.0	ug/L
ether	ND	0.0	ug/L
Hexachlorobenzene	ND	0.80	110 / T
Pentachlorophenol		20	ug/L
Phenanthrene	ND ND		ug/L
Anthracene	ND ND	0.80	ug/L
	ND	0.80	ug/L
Carbazole	ND	4.0	ug/L
Di-n-butyl phthalate	ND	4.0	ug/L
Fluoranthene	ND	0.80	ug/L
Pyrene	ND	0.80	ug/L
Butyl benzyl phthalate	ND	4.0	ug/L
3,3'-Dichlorobenzidine	ND	20	ug/L
Benzo(a)anthracene	ND	0.80	ug/L
Chrysene	ND	0.80	ug/L
bis(2-Ethylhexyl)	ND	8.0	ug/L
phthalate			
Di-n-octyl phthalate	ND	4.0	ug/L
Benzo(b)fluoranthene	ND	0.80	ug/L
Benzo(k)fluoranthene	ND	0.80	ug/L
Benzo(a)pyrene	ND	0.80	ug/L
Indeno(1,2,3-cd)pyrene	ND	0.80	ug/L
Dibenz(a,h)anthracene	ND	0.80	ug/L
Benzo(ghi)perylene	ND	0.80	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	50 DIL	(27 - 111	_)
2-Fluorobiphenyl	51 DIL	(28 - 110	
Terphenyl-d14	59 DIL	(37 - 119	
Phenol-d5	50 DIL	(10 - 110	
2-Fluorophenol	33 DIL	(10 - 110	
2,4,6-Tribromophenol	59 DIL	(22 - 120	
· ·		,	-

Client Sample ID: MW-4

GC/MS Semivolatiles

Lot-Sample #...: A0K220421-007 Work Order #...: MAD4D1AJ Matrix.....: WG

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

MW-4

GC/MS Semivolatiles

Lot-Sample #: A0K220421-007 Work Order #: MAD4D1AJ Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED		RETENTION	
PARAMETER	CAS #	RESULT		TIME	<u>UNITS</u>
Unknown		35 J	Μ	4.3666	ug/L
Unknown		170 J	Μ	4.4148	ug/L
Unknown		11 J	M	4.5057	ug/L
Unknown		42 J	M	4.5806	ug/L
Unknown		20 Ј	Μ	4.9603	ug/L
Unknown		9.9 J	Μ	5.0994	ug/L
Unknown		14 J	Μ	5.324	ug/L
Unknown		14 J	Μ	5.3508	ug/L
Unknown		10 J	Μ	5.4043	ug/L
Unknown		56 J	Μ	5.6182	ug/L
Unknown		41 J	Μ	5.7145	ug/L
Unknown		10 J	Μ	5.9498	ug/L
Unknown		23 Ј	Μ	6.137	ug/L
Unknown		8.4 J	Μ	6.4526	ug/L
Unknown		15 J	M	7.0623	ug/L
Unknown		23 J	M	7.1747	ug/L
Unknown		41 J	M	7.303	ug/L
Unknown		70 J	M	7.5651	ug/L
Unknown		47 J	Μ	8.1321	ug/L
Unknown		93 J	Μ	8.3032	ug/L
Unknown		32 J	Μ	8.4851	ug/L
Unknown		14 J	Μ	8.5065	ug/L
Unknown		53 J	Μ	8.56	ug/L
Unknown		800 J	М	9.0574	ug/L
Unknown		27 J	M	9.2339	ug/L

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-4

TOTAL Metals

Lot-Sample #...: A0K220421-007 **Matrix.....:** WG

Date Sampled...: 11/18/10 17:00 Date Received..: 11/20/10

	DECILIE	REPORTING		MEMILO	D	PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO!	D	ANALYSIS DATE	ORDER #
Prep Batch #	: 0327012						
Arsenic	ND	10.0 Dilution Factor	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4D1AK
Lead	ND	3.0 Dilution Factor	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4D1AL
Selenium	ND	5.0 Dilution Factor	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4D1AM
Thallium	ND	10.0 Dilution Factor	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4D1AN
Antimony	3.3 в	60.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4D1AP
Beryllium	0.60 В	5.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4D1AQ
Cadmium	ND	5.0 Dilution Factor	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4D1AR
Chromium	ND	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4D1AT
Copper	ND	25.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4D1AU
Nickel	10.3 В	40.0 Dilution Factor	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4D1AV
Silver	ND	10.0 Dilution Factor	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4D1AW
Zinc	17.9 В,Ј	20.0 Dilution Factor	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4D1AX
Mercury	ND	0.20 Dilution Factor	ug/L or: 1	SW846	7470A	11/23-11/24/10	MAD4D1AF
(a)							

NOTE(S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-4

DISSOLVED Metals

Lot-Sample #...: A0K220421-007 **Matrix.....:** WG

Date Sampled...: 11/18/10 17:00 Date Received..: 11/20/10

PARAMETER	RESULT	REPORTING		METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #	: 0327012					
Arsenic	ND	10.0 Dilution Fact	_	SW846 6010B	11/23-11/29/10	MAD4D1A0
Lead	ND	3.0 Dilution Fact		SW846 6010B	11/23-11/29/10	MAD4D1A1
Selenium	ND	5.0 Dilution Fact		SW846 6010B	11/23-11/29/10	MAD4D1A2
Thallium	ND	10.0 Dilution Fact		SW846 6010B	11/23-11/29/10	MAD4D1A3
Antimony	ND	60.0 Dilution Fact	_	SW846 6010B	11/23-11/29/10	MAD4D1A4
Beryllium	0.56 В	5.0 Dilution Fact	-	SW846 6010B	11/23-11/29/10	MAD4D1A5
Cadmium	ND	5.0 Dilution Fact	_	SW846 6010B	11/23-11/29/10	MAD4D1A6
Chromium	ND	10.0 Dilution Fact	_	SW846 6010B	11/23-11/29/10	MAD4D1A7
Copper	ND	25.0 Dilution Fact	_	SW846 6010B	11/23-11/29/10	MAD4D1AA
Nickel	8.2 B	40.0 Dilution Fact	-	SW846 6010B	11/23-11/29/10	MAD4D1AC
Silver	ND	10.0 Dilution Fact	_	SW846 6010B	11/23-11/29/10	MAD4D1AD
Zinc	ND	20.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAD4D1AE
Mercury	ND	0.20 Dilution Fact	ug/L or: 1	SW846 7470A	11/23-11/24/10	MAD4D1AG
NOTE(S):						

B Estimated result. Result is less than RL.

Client Sample ID: MW-8

GC/MS Volatiles

Lot-Sample #...: A0K220421-008 Work Order #...: MAD4E1AH Matrix.....: WG

Date Sampled...: 11/19/10 09:25 Date Received..: 11/20/10 Prep Date....: 12/02/10 Analysis Date..: 12/02/10

Prep Batch #...: 0337199

Dilution Factor: 1 Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acetone	45	10	ug/L
Acetonitrile	ND	20	ug/L
Acrolein	ND	20	ug/L
Acrylonitrile	ND	20	ug/L
Allyl chloride	ND	2.0	ug/L
Benzene	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	ug/L
2-Butanone (MEK)	3.0 J	10	ug/L
Carbon disulfide	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Chloroethane	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
Chloroprene	ND	2.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,2-Dibromo-3-chloro-	ND	2.0	ug/L
propane			
1,2-Dibromoethane (EDB)	ND	1.0	ug/L
Dibromomethane	ND	1.0	ug/L
trans-1,4-Dichloro-	ND	1.0	ug/L
2-butene			
Dichlorodifluoromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
1,4-Dioxane	ND	200	ug/L
Ethylbenzene	ND	1.0	ug/L
Ethyl methacrylate	ND	1.0	ug/L
2-Hexanone	ND	10	ug/L
Iodomethane	ND	1.0	ug/L
Isobutyl alcohol	11 Ј	50	ug/L
Methacrylonitrile	ND	2.0	ug/L

Client Sample ID: MW-8

GC/MS Volatiles

Lot-Sample #...: A0K220421-008 Work Order #...: MAD4E1AH Matrix.....: WG

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Methylene chloride	ND	1.0	ug/L
Methyl methacrylate	ND	2.0	ug/L
4-Methyl-2-pentanone	3.1 J	10	ug/L
(MIBK)			
Propionitrile	ND	4.0	ug/L
Styrene	ND	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	0.23 J	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
Vinyl acetate	ND	2.0	ug/L
Vinyl chloride	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Dibromofluoromethane	97	(75 - 121))
1,2-Dichloroethane-d4	113	(63 - 129))
Toluene-d8	89	(74 - 115))
4-Bromofluorobenzene	84	(66 - 117))
		•	

NOTE(S):

J Estimated result. Result is less than RL.

MW-8

GC/MS Volatiles

Lot-Sample #: A0K220421-008 Work Order #: MAD4E1AH Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATE	D	RETENTIO	ON
PARAMETER	CAS #	RESULT		TIME	UNITS
1-Propene, 2-methyl-	115-11-7	4.6 NJ	M	1.6424	ug/L
Unknown		1.6 J	M	13.358	ug/L
Unknown		8.2 J	M	13.429	ug/L
tert-Butyl Alcohol		120	Q	3.943	ug/L
NOTE (C).					

Q: Result was quantitated against the response factor of a calibration standard.

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-8

GC/MS Semivolatiles

Lot-Sample #...: A0K220421-008 Work Order #...: MAD4E1AJ Matrix.....: WG

Date Sampled...: 11/19/10 09:25 Date Received..: 11/20/10 Prep Date....: 11/24/10 Analysis Date..: 12/03/10

Prep Batch #...: 0328034

Dilution Factor: 20 Method.....: SW846 8270C

		REPORTING	
PARAMETER	RESULT	LIMIT	<u>UNITS</u>
Phenol	ND	20	ug/L
bis(2-Chloroethyl)-	ND	20	ug/L
ether			
2-Chlorophenol	ND	20	ug/L
1,3-Dichlorobenzene	ND	20	ug/L
1,4-Dichlorobenzene	ND	20	ug/L
1,2-Dichlorobenzene	ND	20	ug/L
2-Methylphenol	ND	20	ug/L
2,2'-oxybis(1-Chloro-	ND	20	ug/L
propane)			
4-Methylphenol	ND	20	ug/L
N-Nitrosodi-n-propyl-	ND	20	ug/L
amine			
Hexachloroethane	ND	20	ug/L
Nitrobenzene	ND	20	ug/L
Isophorone	ND	20	ug/L
2-Nitrophenol	ND	40	ug/L
2,4-Dimethylphenol	ND	40	ug/L
bis(2-Chloroethoxy)	ND	20	ug/L
methane			
2,4-Dichlorophenol	ND	40	ug/L
1,2,4-Trichloro-	ND	20	ug/L
benzene			
Naphthalene	ND	4.0	ug/L
4-Chloroaniline	ND	40	ug/L
Hexachlorobutadiene	ND	20	ug/L
4-Chloro-3-methylphenol	ND	40	ug/L
2-Methylnaphthalene	ND	4.0	ug/L
Hexachlorocyclopenta-	ND	200	ug/L
diene			
2,4,6-Trichloro-	ND	100	ug/L
phenol			
2,4,5-Trichloro-	ND	100	ug/L
phenol			
2-Chloronaphthalene	ND	20	ug/L
2-Nitroaniline	ND	40	ug/L
Dimethyl phthalate	ND	20	ug/L
Acenaphthylene	ND	4.0	ug/L
2,6-Dinitrotoluene	ND	100	ug/L

Client Sample ID: MW-8

GC/MS Semivolatiles

Lot-Sample #:	A0K220421-008	Work Order	#: MAD4E1AJ	Matrix: V	WС
TOC-Ballible #	AUNZZUIZI-UUU	MOTY OTACL .	H MADILAU	Macilia	<i>/</i> VG

		REPORTING		
PARAMETER	RESULT	LIMIT	<u>UNITS</u>	
3-Nitroaniline	ND	40	ug/L	
Acenaphthene	ND	4.0	ug/L	
2,4-Dinitrophenol	ND	100	ug/L	
4-Nitrophenol	ND	100	ug/L	
Dibenzofuran	ND	20	ug/L	
2,4-Dinitrotoluene	ND	100	ug/L	
Diethyl phthalate	ND	20	ug/L	
4-Chlorophenyl phenyl	ND	40	ug/L	
ether	1.5			
Fluorene	ND	4.0	ug/L	
4-Nitroaniline	ND	40	ug/L	
4,6-Dinitro-	ND	100	ug/L	
2-methylphenol	ND	100	и9/ п	
N-Nitrosodiphenylamine	ND	20	ug/L	
4-Bromophenyl phenyl	ND ND	40	ug/L ug/L	
ether	חוז	4 0	ug/ п	
Hexachlorobenzene	ND	4.0	ug/L	
Pentachlorophenol	ND	100	ug/L	
Phenanthrene	ND	4.0	ug/L	
Anthracene	ND	4.0	ug/L ug/L	
Carbazole	ND ND	20		
Di-n-butyl phthalate	ND ND	20	ug/L	
Fluoranthene		4.0	ug/L	
	ND		ug/L	
Pyrene	ND	4.0	ug/L	
Butyl benzyl phthalate	ND	20	ug/L	
3,3'-Dichlorobenzidine	ND	100	ug/L	
Benzo(a)anthracene	ND	4.0	ug/L	
Chrysene	ND	4.0	ug/L	
bis(2-Ethylhexyl)	ND	40	ug/L	
phthalate	175	0.0	/-	
Di-n-octyl phthalate	ND	20	ug/L	
Benzo(b)fluoranthene	ND	4.0	ug/L	
Benzo(k)fluoranthene	ND	4.0	ug/L	
Benzo(a)pyrene	ND	4.0	ug/L	
Indeno(1,2,3-cd)pyrene	ND	4.0	ug/L	
Dibenz(a,h)anthracene	ND	4.0	ug/L	
Benzo(ghi)perylene	ND	4.0	ug/L	
	DEDCESTE	DEGOTEET	7	
GLID D O G A III E	PERCENT	RECOVERS		
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	42 DIL	(27 - 11		
2-Fluorobiphenyl	47 DIL	(28 - 11		
Terphenyl-d14	45 DIL	(37 - 11		
Phenol-d5	49 DIL	(10 - 11		
2-Fluorophenol	32 DIL	(10 - 11		
2,4,6-Tribromophenol	56 DIL	(22 - 12	20)	

Client Sample ID: MW-8

GC/MS Semivolatiles

Lot-Sample #...: A0K220421-008 Work Order #...: MAD4E1AJ Matrix.....: WG

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

MW-8

GC/MS Semivolatiles

Lot-Sample #: A0K220421-008 Work Order #: MAD4E1AJ Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	
PARAMETER	CAS #	RESULT	TIME	<u>UNITS</u>
Unknown		140 J	M 3.6819	ug/L
Unknown		82 J	M 3.8423	ug/L
Unknown		120 Ј	M 4.3665	ug/L
Unknown		200 J	M 4.5858	ug/L
Unknown		360 J	M 5.3239	ug/L
Unknown		290 Ј	M 5.356	ug/L
Unknown		250 J	M 5.6234	ug/L
Unknown		66 J	M 5.6876	ug/L
Unknown		100 J	M 5.7304	ug/L
Unknown		120 J	М 6.1369	ug/L
Unknown		48 J	M 6.4525	ug/L
Unknown		70 J	M 6.6129	ug/L
Unknown		270 J	M 7.3083	ug/L
Unknown		330 J	M 7.5703	ug/L
Unknown		99 J	M 7.8003	ug/L
Unknown		150 J	M 8.1426	ug/L
Unknown		60 J	M 8.1747	ug/L
Unknown		300 J	M 8.3138	ug/L
Unknown		68 J	M 8.4957	ug/L
Unknown		650 J	M 8.5224	ug/L
Unknown		150 J	M 8.5759	ug/L
Unknown		260 J	M 8.747	ug/L
Unknown		260 J	M 8.8808	ug/L
Unknown		2200 J	M 9.0733	ug/L
Unknown		69 J	М 9.2498	ug/L

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-8

TOTAL Metals

DADAMERED	DEGILE III	REPORTING		MERILOD	PREPARATION- WORK	
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE ORDER	#
Prep Batch #	: 0327012					
Arsenic	10.3	10.0	ug/L	SW846 6010B	11/23-11/29/10 MAD4E1	.AK
		Dilution Fact	or: 1			
Lead	2.9 в	3.0	110 /T.	SW846 6010B	11/23-11/29/10 MAD4E1	ΔТ.
Lead	2.7 5	Dilution Fact	_	SW010 0010B	11/25 11/25/10 PADIE	.гц
Selenium	ND	5.0		SW846 6010B	11/23-11/29/10 MAD4E1	.AM
		Dilution Fact	or: 1			
Thallium	ND	10.0	ua/L	SW846 6010B	11/23-11/29/10 MAD4E1	.AN
		Dilution Fact	_			
Antimony	ND	60.0 Dilution Fact	J.	SW846 6010B	11/23-11/29/10 MAD4E1	.AP
		Dilucion Fact	or. I			
Beryllium	0.89 в	5.0	ug/L	SW846 6010B	11/23-11/29/10 MAD4E1	.AQ
		Dilution Fact	or: 1			
Cadmium	ND	5.0	11 <i>0</i> / T	SW846 6010B	11/23-11/29/10 MAD4E1	7\ TO
Cadillalli	ND	Dilution Fact	J .	2W040 0010B	11/23-11/29/10 MAD4E1	AK
Chromium	5.2 B	10.0	_	SW846 6010B	11/23-11/29/10 MAD4E1	.AT
		Dilution Fact	or: 1			
Copper	15.5 B	25.0	ug/L	SW846 6010B	11/23-11/29/10 MAD4E1	AIJ
		Dilution Fact	_			
Nickel	25.9 В	40.0	_	SW846 6010B	11/23-11/29/10 MAD4E1	.AV
		Dilution Fact	or: 1			
Silver	ND	10.0	ug/L	SW846 6010B	11/23-11/29/10 MAD4E1	.AW
		Dilution Fact	or: 1			
Zinc	34.5 J	20.0	110 /T	SW846 6010B	11/23-11/29/10 MAD4E1	λV
ZIIIC	34.5 0	Dilution Fact	ug/L or: 1	2M040 0010B	11/23-11/29/10 MAD4E1	.AA
Mercury	ND	0.20	ug/L	SW846 7470A	11/23-11/24/10 MAD4E1	.AF
		Dilution Fact	or: 1			

NOTE(S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-8

DISSOLVED Metals

Lot-Sample #...: A0K220421-008 **Matrix.....:** WG

Date Sampled...: 11/19/10 09:25 Date Received..: 11/20/10

PARAMETER	RESULT	REPORTING LIMIT		METHOD		PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Arsenic	: 0327012 4.0 B	10.0 Dilution Factor	ug/L or: 1	SW846 601	10в	11/23-11/29/10	MAD4E1A0
Lead	ND	3.0 Dilution Factor	ug/L or: 1	SW846 601	10B	11/23-11/29/10	MAD4E1A1
Selenium	ND	5.0 Dilution Factor	ug/L or: 1	SW846 601	10B	11/23-11/29/10	MAD4E1A2
Thallium	ND	10.0 Dilution Facto	ug/L or: 1	SW846 601	10B	11/23-11/29/10	MAD4E1A3
Antimony	ND	60.0 Dilution Facto	ug/L or: 1	SW846 601	10B	11/23-11/29/10	MAD4E1A4
Beryllium	0.62 B	5.0 Dilution Factor	ug/L or: 1	SW846 601	10в	11/23-11/29/10	MAD4E1A5
Cadmium	ND	5.0 Dilution Facto	ug/L or: 1	SW846 601	10B	11/23-11/29/10	MAD4E1A6
Chromium	ND	10.0 Dilution Facto	ug/L or: 1	SW846 601	10B	11/23-11/29/10	MAD4E1A7
Copper	ND	25.0 Dilution Facto	ug/L or: 1	SW846 601	10B	11/23-11/29/10	MAD4E1AA
Nickel	15.8 в	40.0 Dilution Factor	ug/L or: 1	SW846 601	10в	11/23-11/29/10	MAD4E1AC
Silver	ND	10.0 Dilution Facto	ug/L or: 1	SW846 601	10B	11/23-11/29/10	MAD4E1AD
Zinc	7.6 в,Ј	20.0 Dilution Factor	ug/L or: 1	SW846 601	10в	11/23-11/29/10	MAD4E1AE
Mercury	ND	0.20 Dilution Factor	ug/L or: 1	SW846 747	70A	11/23-11/24/10	MAD4E1AG
MOTE (C)							

NOTE(S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-2

GC/MS Volatiles

Lot-Sample #...: A0K220421-009 Work Order #...: MAD4F1AH Matrix.....: WG

Date Sampled...: 11/19/10 10:40 Date Received..: 11/20/10 Prep Date....: 12/02/10 Analysis Date..: 12/02/10

Prep Batch #...: 0337199

Dilution Factor: 1 Method.....: SW846 8260B

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND	10	ug/L
Acetonitrile	ND	20	uq/L
Acrolein	ND	20	uq/L
Acrylonitrile	ND	20	ug/L
Allyl chloride	ND	2.0	ug/L
Benzene	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	ug/L
2-Butanone (MEK)	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Chloroethane	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
Chloroprene	ND	2.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,2-Dibromo-3-chloro-	ND	2.0	ug/L
propane			
1,2-Dibromoethane (EDB)	ND	1.0	ug/L
Dibromomethane	ND	1.0	ug/L
trans-1,4-Dichloro-	ND	1.0	ug/L
2-butene			
Dichlorodifluoromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
1,4-Dioxane	ND	200	ug/L
Ethylbenzene	ND	1.0	ug/L
Ethyl methacrylate	ND	1.0	ug/L
2-Hexanone	ND	10	ug/L
Iodomethane	ND	1.0	ug/L
Isobutyl alcohol	ND	50	ug/L
Methacrylonitrile	ND	2.0	ug/L

Client Sample ID: MW-2

GC/MS Volatiles

Lot-Sample #...: A0K220421-009 Work Order #...: MAD4F1AH Matrix.....: WG

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Methylene chloride	ND	1.0	ug/L
Methyl methacrylate	ND	2.0	ug/L
4-Methyl-2-pentanone	ND	10	ug/L
(MIBK)			
Propionitrile	ND	4.0	ug/L
Styrene	ND	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
Vinyl acetate	ND	2.0	ug/L
Vinyl chloride	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	95	(75 - 121)	_
1,2-Dichloroethane-d4	109	(63 - 129)	
Toluene-d8	90	(74 - 115)	
4-Bromofluorobenzene	81	(66 - 117)	

MW-2

GC/MS Volatiles

Lot-Sample #: A0K220421-009 Work Order #: MAD4F1AH Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	
PARAMETER	CAS #	RESULT	TIME	<u>UNITS</u>
Silane, fluorotrimethyl-	420-56-4	1.9 NJ N	1 1.8322	ug/L
Silanol, trimethyl-	1066-40-6	1.9 NJ N	1 5.544	ug/L

NOTE(S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-2

GC/MS Semivolatiles

Lot-Sample #...: A0K220421-009 Work Order #...: MAD4F1AJ Matrix.....: WG

Date Sampled...: 11/19/10 10:40 Date Received..: 11/20/10 Prep Date....: 11/24/10 Analysis Date..: 12/03/10

Prep Batch #...: 0328034

Dilution Factor: 1 Method.....: SW846 8270C

		REPORTING	
PARAMETER	RESULT	LIMIT	<u>UNITS</u>
Phenol	ND	1.0	ug/L
bis(2-Chloroethyl)-	ND	1.0	ug/L
ether			
2-Chlorophenol	ND	1.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
2-Methylphenol	ND	1.0	ug/L
2,2'-oxybis(1-Chloro-	ND	1.0	ug/L
propane)			
4-Methylphenol	ND	1.0	ug/L
N-Nitrosodi-n-propyl-	ND	1.0	ug/L
amine			
Hexachloroethane	ND	1.0	ug/L
Nitrobenzene	ND	1.0	ug/L
Isophorone	ND	1.0	ug/L
2-Nitrophenol	ND	2.0	ug/L
2,4-Dimethylphenol	ND	2.0	ug/L
bis(2-Chloroethoxy)	ND	1.0	ug/L
methane			
2,4-Dichlorophenol	ND	2.0	ug/L
1,2,4-Trichloro-	ND	1.0	ug/L
benzene			
Naphthalene	ND	0.20	ug/L
4-Chloroaniline	ND	2.0	ug/L
Hexachlorobutadiene	ND	1.0	ug/L
4-Chloro-3-methylphenol	ND	2.0	ug/L
2-Methylnaphthalene	ND	0.20	ug/L
Hexachlorocyclopenta-	ND	10	ug/L
diene			
2,4,6-Trichloro-	ND	5.0	ug/L
phenol			
2,4,5-Trichloro-	ND	5.0	ug/L
phenol			
2-Chloronaphthalene	ND	1.0	ug/L
2-Nitroaniline	ND	2.0	ug/L
Dimethyl phthalate	ND	1.0	ug/L
Acenaphthylene	ND	0.20	ug/L
2,6-Dinitrotoluene	ND	5.0	ug/L

Client Sample ID: MW-2

GC/MS Semivolatiles

Lot-Sample #...: A0K220421-009 Work Order #...: MAD4F1AJ Matrix.....: WG

		REPORTING	7
PARAMETER	RESULT	LIMIT	<u>UNITS</u>
3-Nitroaniline	ND	2.0	ug/L
Acenaphthene	ND	0.20	ug/L
2,4-Dinitrophenol	ND	5.0	ug/L
4-Nitrophenol	ND	5.0	ug/L
Dibenzofuran	ND	1.0	ug/L
2,4-Dinitrotoluene	ND	5.0	ug/L
Diethyl phthalate	ND	1.0	ug/L
4-Chlorophenyl phenyl	ND	2.0	ug/L
ether	ND	2.0	49/1
Fluorene	ND	0.20	ug/L
4-Nitroaniline	ND	2.0	ug/L
4,6-Dinitro-	ND	5.0	ug/L
2-methylphenol	ND	5.0	и9/ п
N-Nitrosodiphenylamine	ND	1.0	110 / T
			ug/L
4-Bromophenyl phenyl ether	ND	2.0	ug/L
Hexachlorobenzene	ND	0.20	ug/L
Pentachlorophenol	ND	5.0	ug/L
Phenanthrene	ND	0.20	ug/L
Anthracene	ND	0.20	ug/L
Carbazole	ND	1.0	ug/L
Di-n-butyl phthalate	ND	1.0	ug/L
Fluoranthene	ND	0.20	ug/L
Pyrene	ND	0.20	ug/L
Butyl benzyl phthalate	ND	1.0	ug/L
3,3'-Dichlorobenzidine	ND	5.0	ug/L
Benzo(a)anthracene	ND	0.20	ug/L
Chrysene	ND	0.20	ug/L
bis(2-Ethylhexyl)	ND	2.0	ug/L
phthalate	ND	2.0	ug/ L
Di-n-octyl phthalate	ND	1.0	ug/L
Benzo(b)fluoranthene	ND	0.20	ug/L
Benzo(k)fluoranthene	ND	0.20	ug/L
Benzo(a)pyrene	ND	0.20	ug/L
Indeno(1,2,3-cd)pyrene	ND	0.20	ug/L
Dibenz(a,h)anthracene	ND	0.20	ug/L
Benzo(ghi)perylene	ND	0.20	ug/L
Belizo(giii) per y relie	ND	0.20	ug/ L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	44	(27 - 111	L)
2-Fluorobiphenyl	45	(28 - 110))
Terphenyl-d14	72	(37 - 119	9)
Phenol-d5	44	(10 - 110	
2-Fluorophenol	24	(10 - 110	
2,4,6-Tribromophenol	57	(22 - 120	
, ,	-	,	•

MW-2

GC/MS Semivolatiles

Lot-Sample #: A0K220421-009 Work Order #: MAD4F1AJ Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

NOTE(S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-2

TOTAL Metals

Lot-Sample #...: A0K220421-009 **Matrix**.....: WG

Date Sampled...: 11/19/10 10:40 Date Received..: 11/20/10

PARAMETER	RESULT	REPORTING		METHO	D	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #	.: 0327012 5.9 B	10.0	ug/L	SW846	6010B	11/23-11/29/10	MAD4F1AK
		Dilution Fact	or: 1				
Lead	ND	3.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4F1AL
Selenium	ND	5.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4F1AM
Thallium	ND	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4F1AN
Antimony	ND	60.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4F1AP
Beryllium	0.74 в	5.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4F1AQ
Cadmium	ND	5.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4F1AR
Chromium	ND	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4F1AT
Copper	ND	25.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4F1AU
Nickel	ND	40.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4F1AV
Silver	ND	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4F1AW
Zinc	ND	20.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4F1AX
Mercury	ND	0.20 Dilution Fact	ug/L or: 1	SW846	7470A	11/23-11/24/10	MAD4F1AF
NOTE(S):							

B Estimated result. Result is less than RL.

Client Sample ID: MW-2

DISSOLVED Metals

Lot-Sample #...: A0K220421-009 **Matrix**.....: WG

Date Sampled...: 11/19/10 10:40 Date Received..: 11/20/10

PARAMETER	RESULT	REPORTING		METHO:	D	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #	.: 0327012 5.5 B	10.0	uq/L	SW846	6010B	11/23-11/29/10	MAD4F1A0
		Dilution Fact	_				_
Lead	ND	3.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4F1A1
Selenium	ND	5.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4F1A2
Thallium	ND	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4F1A3
Antimony	ND	60.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4F1A4
Beryllium	0.59 в	5.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4F1A5
Cadmium	ND	5.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4F1A6
Chromium	ND	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4F1A7
Copper	ND	25.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4F1AA
Nickel	ND	40.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4F1AC
Silver	ND	10.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4F1AD
Zinc	ND	20.0 Dilution Fact	ug/L or: 1	SW846	6010B	11/23-11/29/10	MAD4F1AE
Mercury	ND	0.20 Dilution Fact	ug/L or: 1	SW846	7470A	11/23-11/24/10	MAD4F1AG
NOTE(S):							

B Estimated result. Result is less than RL.

Client Sample ID: MW-5

GC/MS Volatiles

Lot-Sample #...: A0K220421-010 Work Order #...: MAD4G1AH Matrix.....: WG

Date Sampled...: 11/19/10 11:30 Date Received..: 11/20/10 Prep Date....: 12/02/10 Analysis Date..: 12/02/10

Prep Batch #...: 0337199

Dilution Factor: 5 Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acetone	130	50	ug/L
Acetonitrile	ND	100	ug/L
Acrolein	ND	100	ug/L
Acrylonitrile	ND	100	ug/L
Allyl chloride	ND	10	ug/L
Benzene	13	5.0	ug/L
Bromodichloromethane	ND	5.0	ug/L
Bromoform	ND	5.0	ug/L
Bromomethane	ND	5.0	ug/L
2-Butanone (MEK)	42 J	50	ug/L
Carbon disulfide	1.7 J	5.0	ug/L
Carbon tetrachloride	ND	5.0	ug/L
Chlorobenzene	ND	5.0	ug/L
Chloroethane	ND	5.0	ug/L
Chloroform	ND	5.0	ug/L
Chloromethane	ND	5.0	ug/L
Chloroprene	ND	10	ug/L
Dibromochloromethane	ND	5.0	ug/L
1,2-Dibromo-3-chloro-	ND	10	ug/L
propane			
1,2-Dibromoethane (EDB)	ND	5.0	ug/L
Dibromomethane	ND	5.0	ug/L
trans-1,4-Dichloro-	ND	5.0	ug/L
2-butene			
Dichlorodifluoromethane	ND	5.0	ug/L
1,1-Dichloroethane	ND	5.0	ug/L
1,2-Dichloroethane	ND	5.0	ug/L
1,1-Dichloroethene	ND	5.0	ug/L
trans-1,2-Dichloroethene	ND	5.0	ug/L
1,2-Dichloropropane	ND	5.0	ug/L
cis-1,3-Dichloropropene	ND	5.0	ug/L
trans-1,3-Dichloropropene	ND	5.0	ug/L
1,4-Dioxane	ND	1000	ug/L
Ethylbenzene	2.4 J	5.0	ug/L
Ethyl methacrylate	ND	5.0	ug/L
2-Hexanone	ND	50	ug/L
Iodomethane	ND	5.0	ug/L
Isobutyl alcohol	ND	250	ug/L
Methacrylonitrile	ND	10	ug/L

Client Sample ID: MW-5

GC/MS Volatiles

Lot-Sample #...: A0K220421-010 Work Order #...: MAD4G1AH Matrix.....: WG

	REPORTING	
RESULT	LIMIT	UNITS
ND	5.0	ug/L
ND	10	ug/L
340	50	ug/L
ND	20	ug/L
ND	5.0	ug/L
7.0	5.0	ug/L
ND	5.0	ug/L
ND	5.0	ug/L
2.0 J	5.0	ug/L
ND	5.0	ug/L
ND	5.0	ug/L
ND	10	ug/L
ND	5.0	ug/L
5.2 J	10	ug/L
PERCENT	RECOVERY	
-		
	_)
112	•	
91		
89	•	
	(,
	ND N	RESULT LIMIT ND 5.0 ND 10 340 50 ND 20 ND 5.0 ND 10 ND 5.0 S-2 J 10 PERCENT RECOVERY LIMITS 104 (75 - 121 112 (63 - 129 91 (74 - 115

J Estimated result. Result is less than RL.

MW-5

GC/MS Volatiles

Lot-Sample #: A0K220421-010 Work Order #: MAD4G1AH Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	
PARAMETER	CAS #	RESULT	TIME	UNITS
1-Propene, 2-methyl-	115-11-7	93 NJ M	1.6543	ug/L
Unknown		45 J M	8.8168	ug/L
2-Hexanol, 2-methyl-	625-23-0	66 NJ M	9.3386	ug/L
1-Pentene, 2,4,4-trimethyl-	107-39-1	18 NJ M	9.6943	ug/L
Unknown		23 J M	13.228	ug/L
Unknown		33 J M	13.299	ug/L
Unknown		110 J M	13.358	ug/L
Cyclohexene, 1-methyl-4-(1-met	586-62-9	12 NJ M	13.939	ug/L

NOTE(S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-5

GC/MS Semivolatiles

Lot-Sample #...: A0K220421-010 Work Order #...: MAD4G1AJ Matrix.....: WG

Date Sampled...: 11/19/10 11:30 Date Received..: 11/20/10 Prep Date.....: 11/25/10 Analysis Date..: 12/06/10

Prep Batch #...: 0328322

Dilution Factor: 50 Method.....: SW846 8270C

PARAMETER RESULT LIMIT UNITS		REPOR		ring		
Dis(2-Chloroethyl) - ether ND S0 ug/L	PARAMETER	RESULT	LIMIT	<u>UNITS</u>		
### Table	Phenol		50	ug/L		
2-Chlorophenol	bis(2-Chloroethyl)-	ND	50	ug/L		
1,3-Dichlorobenzene ND 50 ug/L 1,4-Dichlorobenzene ND 50 ug/L 1,2-Dichlorobenzene ND 50 ug/L 2-Methylphenol ND 50 ug/L 2,2'-oxybis(1-Chloropropulation) ND 50 ug/L 4-Methylphenol ND 50 ug/L N-Nitrosodi-n-propyladine ND 50 ug/L Mitrobenzene ND 50 ug/L Nitrosenzene ND 50 ug/L Nitrophenol ND 50 ug/L 1sophorone ND 50 ug/L 2-Nitrophenol ND 100 ug/L 2,4-Dimethylphenol ND 100 ug/L 2,4-Dichloroethoxy) ND 50 ug/L methane ND 100 ug/L 2,4-Dichlorophenol ND 100 ug/L 1,2,4-Trichlorophenol ND 10 ug/L 4-Chloroanline ND 10 ug/L 4-Chloroamethylphenol ND 10 ug/	ether					
1,4-Dichlorobenzene ND 50 ug/L 1,2-Dichlorobenzene ND 50 ug/L 2-Methylphenol ND 50 ug/L 2,2'-oxybis(1-Chloropropulation) ND 50 ug/L propane) ND 50 ug/L 4-Methylphenol ND 50 ug/L N-Nitrosodi-n-propyl-amine ND 50 ug/L amine ND 50 ug/L Hexachloroethane ND 50 ug/L Nitrobenzene ND 50 ug/L Nitrobenzene ND 50 ug/L Nitrobenzene ND 100 ug/L 2-Nitrophenol ND 100 ug/L 2-A-Dichoroethoxy) ND 100 ug/L beis(2-Chloroethoxy) ND 50 ug/L benzene ND 100 ug/L Naphthalene ND 10 ug/L 4-Chloroajline ND 50 ug/L </td <td>2-Chlorophenol</td> <td>ND</td> <td>50</td> <td>ug/L</td>	2-Chlorophenol	ND	50	ug/L		
1,2-Dichlorobenzene ND 50 ug/L 2-Methylphenol ND 50 ug/L 2,2'-oxybis(1-Chloropropane) ND 50 ug/L 4-Methylphenol ND 50 ug/L N-Nitrosodi-n-propylamine ND 50 ug/L amine ND 50 ug/L Hexachloroethane ND 50 ug/L Nitrobenzene ND 50 ug/L 1sophorone ND 50 ug/L 2-Nitrophenol ND 100 ug/L 2-Nitrophenol ND 100 ug/L 2,4-Dichloroethoxy) ND 50 ug/L methane 2,4-Trichloro- ND 50 ug/L 1,2,4-Trichloro- ND 50 ug/L benzene ND 10 ug/L Naphthalene ND 10 ug/L 4-Chloroanethylphenol ND 10 ug/L 4-Chloro-3-methylphenol ND 10 ug/L 4-Chlorosphthalene ND 50 ug	1,3-Dichlorobenzene	ND	50	ug/L		
2-Methylphenol ND 50 ug/L 2,2'-oxybis(1-Chloro- propane) 4-Methylphenol ND 50 ug/L N-Nitrosodi-n-propyl- amine Hexachloroethane ND 50 ug/L Isophorone ND 50 ug/L 2-Nitrophenol ND 50 ug/L 2-Nitrophenol ND 50 ug/L 2-Nitrophenol ND 50 ug/L 2-Nitrophenol ND 100 ug/L 2,4-Dimethylphenol ND 100 ug/L 1,2,4-Trichloro- benzene ND 10 ug/L 4-Chloroaniline ND 10 ug/L 4-Chloro-3-methylphenol ND 10 ug/L 2-Methylnaphthalene ND 10 ug/L 2-Methylnaphthalene ND 50 ug/L Hexachlorocyclopenta- diene 2,4,5-Trichloro- phenol 2-(1,5-Trichloro- phenol 2-(2-Nitroaniline ND 250 ug/L diene 2-(3,5-Trichloro- phenol 2-(5-Trichloro- phenol 3-(5-Trichloro- phenol 3-(5-Trichlor	1,4-Dichlorobenzene	ND	50	ug/L		
2,2'-oxybis(1-Chloropropuls) 4-Methylphenol ND 50 ug/L N-Nitrosodi-n-propyl- ND 50 ug/L amine Hexachloroethane ND 50 ug/L Nitrobenzene ND 50 ug/L Isophorone ND 50 ug/L 2-Nitrophenol ND 50 ug/L 2-Nitrophenol ND 100 ug/L 2,4-Dimethylphenol ND 100 ug/L isis(2-Chloroethoxy) ND 50 ug/L methane 2,4-Dichlorophenol ND 100 ug/L 1,2,4-Trichlorobenzene ND 50 ug/L bis(2-Chloroaniline ND 100 ug/L 1,2,4-Trichlorobenzene ND 50 ug/L Hexachlorobutadiene ND 10 ug/L 4-Chloro-3-methylphenol ND 10 ug/L 2-Methylnaphthalene ND 10 ug/L 4-Chloro-3-methylphenol ND 10 ug/L 4-Chloro-3-methylphenol ND 10 ug/L 4-Chlorobutadiene ND 10 ug/L 2-Methylnaphthalene ND 10 ug/L diene 2,4,6-Trichloro- ND 50 ug/L diene 2,4,5-Trichloro- ND 50 ug/L phenol 2-Chloronaphthalene ND 50 ug/L 2-Nitroaniline ND 50 ug/L 2-Nitroaniline ND 50 ug/L phenol 2-Chloronaphthalene ND 50 ug/L 2-Nitroaniline ND 50 ug/L 2-Nitroaniline ND 50 ug/L 2-Nitroaniline ND 50 ug/L 2-Nitroaniline ND 50 ug/L Acenaphthylene ND 50 ug/L	1,2-Dichlorobenzene	ND	50	ug/L		
### Propage Pr	2-Methylphenol	ND	50	ug/L		
4-Methylphenol ND 50 ug/L N-Nitrosodi-n-propyl-amine ND 50 ug/L Hexachloroethane ND 50 ug/L Nitrobenzene ND 50 ug/L Sophorone ND 50 ug/L 2-Nitrophenol ND 100 ug/L 2,4-Dimethylphenol ND 100 ug/L bis(2-Chloroethoxy) ND 50 ug/L methane 2,4-Dichlorophenol ND 100 ug/L 1,2,4-Trichloro-benzene ND 50 ug/L Naphthalene ND 10 ug/L 4-Chloroaniline ND 100 ug/L 4-Chloroaniline ND 100 ug/L 4-Chloro-3-methylphenol ND 10 ug/L 4-Chloro-3-methylphenol ND 10 ug/L 2-Methylnaphthalene ND 500 ug/L Hexachlorocyclopenta-diene ND 500 ug/L 2,4,6-Trichloro-phenol ND 250 ug/L 2,4,5-Trichloro-phenol </td <td>2,2'-oxybis(1-Chloro-</td> <td>ND</td> <td>50</td> <td>ug/L</td>	2,2'-oxybis(1-Chloro-	ND	50	ug/L		
ND SO Ug/L	propane)					
### Ambie	4-Methylphenol	ND	50	ug/L		
Hexachloroethane	N-Nitrosodi-n-propyl-	ND	50	ug/L		
Nitrobenzene ND 50 ug/L Isophorone ND 50 ug/L 2-Nitrophenol ND 100 ug/L 2,4-Dimethylphenol ND 100 ug/L bis(2-Chloroethoxy) ND 50 ug/L methane . . . 2,4-Dichlorophenol ND 100 ug/L 1,2,4-Trichloro- ND 50 ug/L benzene ND 10 ug/L Naphthalene ND 10 ug/L 4-Chloroaniline ND 100 ug/L Hexachlorobutadiene ND 100 ug/L 4-Chloro-3-methylphenol ND 10 ug/L 2-Methylnaphthalene ND 10 ug/L Hexachlorocyclopenta- ND 50 ug/L diene 2,4,6-Trichloro- ND 250 ug/L 2,4,5-Trichloro- ND 50 ug/L phenol 2-Chloronaphthalene	amine					
Isophorone	Hexachloroethane	ND	50	ug/L		
2-Nitrophenol ND 100 ug/L 2,4-Dimethylphenol ND 100 ug/L bis(2-Chloroethoxy) ND 50 ug/L methane ug/L 2,4-Dichlorophenol ND 100 ug/L 1,2,4-Trichloro- ND 50 ug/L benzene ND 10 ug/L Naphthalene ND 100 ug/L 4-Chloroaniline ND 100 ug/L 4-Chloro-3-methylphenol ND 10 ug/L 2-Methylnaphthalene ND 10 ug/L Hexachlorocyclopenta- ND 500 ug/L diene 2,4,6-Trichloro- ND 250 ug/L phenol 2,4,5-Trichloro- ND 250 ug/L 2-Chloronaphthalene ND 50 ug/L 2-Chloronaphthalene ND 100 ug/L Dimethyl phthalate ND 50 ug/L Acenaphthylene ND 10 ug/L	Nitrobenzene	ND	50	ug/L		
2,4-Dimethylphenol ND 100 ug/L bis(2-Chloroethoxy) ND 50 ug/L methane 2,4-Dichlorophenol ND 100 ug/L 1,2,4-Trichloro- ND 50 ug/L benzene ND 10 ug/L Naphthalene ND 100 ug/L 4-Chloroaniline ND 50 ug/L Hexachlorobutadiene ND 100 ug/L 4-Chloro-3-methylphenol ND 100 ug/L 2-Methylnaphthalene ND 500 ug/L Hexachlorocyclopenta- ND 500 ug/L diene 2,4,6-Trichloro- ND 250 ug/L 2,4,5-Trichloro- ND 250 ug/L phenol 2 ug/L 0 2-Chloronaphthalene ND 50 ug/L 2-Nitroaniline ND 50 ug/L Dimethyl phthalate ND 50 ug/L Acenaphthylene ND 10	Isophorone	ND	50	ug/L		
bis(2-Chloroethoxy) ND 50 ug/L methane 2,4-Dichlorophenol ND 100 ug/L 1,2,4-Trichloro- ND 50 ug/L benzene ND 10 ug/L Naphthalene ND 100 ug/L 4-Chloroaniline ND 50 ug/L Hexachlorobutadiene ND 100 ug/L 4-Chloro-3-methylphenol ND 10 ug/L 2-Methylnaphthalene ND 500 ug/L Hexachlorocyclopenta- ND 500 ug/L diene 2,4,6-Trichloro- ND 250 ug/L 2,4,5-Trichloro- ND 250 ug/L phenol 2 ug/L ug/L 2-Chloronaphthalene ND 50 ug/L 2-Nitroaniline ND 100 ug/L Dimethyl phthalate ND 50 ug/L Acenaphthylene ND 10 ug/L	2-Nitrophenol	ND	100	ug/L		
methane 2,4-Dichlorophenol ND 100 ug/L 1,2,4-Trichloro- ND 50 ug/L benzene Naphthalene ND 10 ug/L 4-Chloroaniline ND 100 ug/L Hexachlorobutadiene ND 50 ug/L 4-Chloro-3-methylphenol ND 100 ug/L 2-Methylnaphthalene ND 100 ug/L Hexachlorocyclopenta- ND 100 ug/L diene 2,4,6-Trichloro- ND 500 ug/L phenol 2,4,5-Trichloro- ND 250 ug/L phenol 2-Chloronaphthalene ND 50 ug/L phenol 100 ug/L phenol 100 ug/L Acenaphthylene ND 50 ug/L	2,4-Dimethylphenol	ND	100	ug/L		
2,4-Dichlorophenol ND 100 ug/L 1,2,4-Trichloro- ND 50 ug/L benzene ND 10 ug/L Naphthalene ND 100 ug/L 4-Chloroaniline ND 50 ug/L Hexachlorobutadiene ND 100 ug/L 4-Chloro-3-methylphenol ND 10 ug/L 2-Methylnaphthalene ND 500 ug/L Hexachlorocyclopenta- ND 500 ug/L diene 2,4,6-Trichloro- ND 250 ug/L phenol 2 2,4,5-Trichloro- ND 250 ug/L 2-Chloronaphthalene ND 50 ug/L 2-Nitroaniline ND 100 ug/L Dimethyl phthalate ND 50 ug/L Acenaphthylene ND 10 ug/L	bis(2-Chloroethoxy)	ND	50	ug/L		
1,2,4-Trichloro-benzene Naphthalene ND 10 4-Chloroaniline ND 100 ug/L Hexachlorobutadiene ND 50 ug/L 4-Chloro-3-methylphenol ND 100 ug/L 2-Methylnaphthalene ND 10 ug/L Hexachlorocyclopenta-ND diene 2,4,6-Trichloro-ND phenol 2,4,5-Trichloro-ND 250 ug/L phenol 2-Chloronaphthalene ND 50 ug/L 0 ug/L	methane					
benzene Naphthalene ND 10 ug/L 4-Chloroaniline ND 100 ug/L Hexachlorobutadiene ND 50 ug/L 4-Chloro-3-methylphenol ND 100 ug/L 2-Methylnaphthalene ND 10 ug/L Hexachlorocyclopenta- ND 500 ug/L diene 2,4,6-Trichloro- ND 250 ug/L phenol 2,4,5-Trichloro- ND phenol 2-Chloronaphthalene ND 50 ug/L 0 ug/L	2,4-Dichlorophenol	ND	100	ug/L		
Naphthalene ND 10 ug/L 4-Chloroaniline ND 100 ug/L Hexachlorobutadiene ND 50 ug/L 4-Chloro-3-methylphenol ND 100 ug/L 2-Methylnaphthalene ND 10 ug/L Hexachlorocyclopenta- ND 500 ug/L diene S100 ug/L cliene S2,4,6-Trichloro- ND 250 ug/L phenol S250 ug/L 2-Affichloro- ND 500 ug/L phenol S500 ug/L Acenaphthylene ND 500 ug/L	1,2,4-Trichloro-	ND	50	ug/L		
4-Chloroaniline ND 100 ug/L Hexachlorobutadiene ND 50 ug/L 4-Chloro-3-methylphenol ND 100 ug/L 2-Methylnaphthalene ND 10 ug/L Hexachlorocyclopenta- ND 500 ug/L diene 2,4,6-Trichloro- ND 250 ug/L phenol 2,4,5-Trichloro- ND 250 ug/L 2-Chloronaphthalene ND 50 ug/L 2-Nitroaniline ND 50 ug/L Dimethyl phthalate ND 50 ug/L Acenaphthylene ND 100 ug/L	benzene					
Hexachlorobutadiene ND 50 ug/L 4-Chloro-3-methylphenol ND 100 ug/L 2-Methylnaphthalene ND 10 ug/L Hexachlorocyclopenta- ND 500 ug/L diene 2,4,6-Trichloro- ND 250 ug/L phenol 2,4,5-Trichloro- ND 250 ug/L phenol 2-Chloronaphthalene ND 50 ug/L 2-Nitroaniline ND 100 ug/L Dimethyl phthalate ND 50 ug/L Acenaphthylene ND 100 ug/L	Naphthalene	ND	10	ug/L		
4-Chloro-3-methylphenol ND 100 ug/L 2-Methylnaphthalene ND 10 ug/L Hexachlorocyclopenta- ND 500 ug/L diene 2,4,6-Trichloro- ND 250 ug/L phenol 2,4,5-Trichloro- ND 250 ug/L phenol 2-Chloronaphthalene ND 50 ug/L 2-Nitroaniline ND 100 ug/L Dimethyl phthalate ND 50 ug/L Acenaphthylene ND 100 ug/L	4-Chloroaniline	ND	100	ug/L		
2-Methylnaphthalene ND 10 ug/L Hexachlorocyclopenta- diene 2,4,6-Trichloro- phenol 2,4,5-Trichloro- ND 250 ug/L phenol 2-Chloronaphthalene ND 50 ug/L 2-Nitroaniline ND 100 ug/L Dimethyl phthalate ND 50 ug/L Acenaphthylene ND 100 ug/L		ND	50	ug/L		
Hexachlorocyclopenta- diene 2,4,6-Trichloro- phenol 2,4,5-Trichloro- phenol 2-Chloronaphthalene ND	4-Chloro-3-methylphenol	ND	100	ug/L		
diene 2,4,6-Trichloro- ND 250 ug/L phenol 250 ug/L 2,4,5-Trichloro- ND 250 ug/L phenol 50 ug/L 2-Chloronaphthalene ND 100 ug/L 2-Nitroaniline ND 50 ug/L Dimethyl phthalate ND 50 ug/L Acenaphthylene ND 10 ug/L	2-Methylnaphthalene	ND	10	ug/L		
2,4,6-Trichloro- phenol 2,4,5-Trichloro- phenol 2-Chloronaphthalene ND 50 ug/L 2-Nitroaniline ND 100 ug/L Dimethyl phthalate ND 50 ug/L 100 ug/L 100 ug/L 100 ug/L	Hexachlorocyclopenta-	ND	500	ug/L		
phenol 2,4,5-Trichloro- phenol 2-Chloronaphthalene ND 50 ug/L 2-Nitroaniline ND 100 ug/L Dimethyl phthalate ND 50 ug/L 100 ug/L 100 ug/L 100 ug/L						
2,4,5-Trichloro- ND 250 ug/L phenol 2-Chloronaphthalene ND 50 ug/L 2-Nitroaniline ND 100 ug/L Dimethyl phthalate ND 50 ug/L Acenaphthylene ND 10 ug/L		ND	250	ug/L		
phenol 2-Chloronaphthalene ND 50 ug/L 2-Nitroaniline ND 100 ug/L Dimethyl phthalate ND 50 ug/L Acenaphthylene ND 10 ug/L						
2-ChloronaphthaleneND50ug/L2-NitroanilineND100ug/LDimethyl phthalateND50ug/LAcenaphthyleneND10ug/L		ND	250	ug/L		
2-Nitroaniline ND 100 ug/L Dimethyl phthalate ND 50 ug/L Acenaphthylene ND 10 ug/L	-					
Dimethyl phthalate ND 50 ug/L Acenaphthylene ND 10 ug/L	2-Chloronaphthalene	ND	50	ug/L		
Acenaphthylene ND 10 ug/L		ND	100	ug/L		
	Dimethyl phthalate	ND	50	ug/L		
2,6-Dinitrotoluene ND 250 ug/L		ND		ug/L		
	2,6-Dinitrotoluene	ND	250	ug/L		

Client Sample ID: MW-5

GC/MS Semivolatiles

Lot-Sample #:	A0K220421-010	Work Order	#: MAD4G1AJ	Matrix	: WG
TOU DAMPTE #	AUNZZUTZI UIU	MOTV OTGET .	# · PIADIGIAU	ration in the second	. • WG

		REPORTING	1
PARAMETER	RESULT	LIMIT	UNITS
3-Nitroaniline	ND	100	ug/L
Acenaphthene	ND	10	ug/L
2,4-Dinitrophenol	ND	250	ug/L
4-Nitrophenol	ND	250	ug/L
Dibenzofuran	ND	50	ug/L
2,4-Dinitrotoluene	ND	250	ug/L
Diethyl phthalate	ND	50	ug/L
4-Chlorophenyl phenyl	ND	100	ug/L
ether		_00	~
Fluorene	ND	10	ug/L
4-Nitroaniline	ND	100	ug/L
4,6-Dinitro-	ND	250	ug/L
2-methylphenol	112	200	~3/ -
N-Nitrosodiphenylamine	ND	50	ug/L
4-Bromophenyl phenyl	ND	100	ug/L
ether	110	100	49/ H
Hexachlorobenzene	ND	10	ug/L
Pentachlorophenol	ND	250	ug/L
Phenanthrene	ND	10	ug/L
Anthracene	ND	10	ug/L
Carbazole	ND	50	ug/L
Di-n-butyl phthalate	ND	50	ug/L ug/L
Fluoranthene	ND	10	ug/L ug/L
Pyrene	ND	10	ug/L ug/L
Butyl benzyl phthalate	ND	50	ug/L ug/L
3,3'-Dichlorobenzidine	ND	250	ug/L
Benzo(a)anthracene	ND	10	ug/L ug/L
Chrysene	ND	10	ug/L ug/L
bis(2-Ethylhexyl)	ND	100	ug/L ug/L
phthalate	1117	100	ug/ u
Di-n-octyl phthalate	ND	50	ug/L
Benzo(b)fluoranthene	ND	10	ug/L ug/L
Benzo(k)fluoranthene	ND ND	10	ug/L ug/L
Benzo(a)pyrene	ND ND	10	ug/L ug/L
Indeno(1,2,3-cd)pyrene	ND	10	ug/L
Dibenz(a,h)anthracene	ND ND	10	ug/L ug/L
Benzo(ghi)perylene	ND ND	10	ug/L ug/L
penzo (Ant) bet à tene	IND	1 0	и9/ п
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	0.0 DIL,*	(27 - 111	<u> </u>
2-Fluorobiphenyl	0.0 DIL,*	(27 - 111)	
Terphenyl-d14	0.0 DIL,*	(37 - 110)	
Phenol-d5	0.0 DIL,*	(37 - 119)	
2-Fluorophenol	0.0 DIL,*	(10 - 110	
2,4,6-Tribromophenol	0.0 DIL, *	(22 - 120	
Z, T, O-ILIDIOMOPHEHOI	O.O DIL,"	(22 - 120	' '

Client Sample ID: MW-5

GC/MS Semivolatiles

Lot-Sample #...: A0K220421-010 Work Order #...: MAD4G1AJ Matrix.....: WG

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

^{*} Surrogate recovery is outside stated control limits.

MW-5

GC/MS Semivolatiles

Lot-Sample #: A0K220421-010 Work Order #: MAD4G1AJ Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED		RETENTION	
PARAMETER	CAS #	RESULT		TIME	UNITS
Unknown		370 J	M	2.102	ug/L
Unknown		950 J	M	2.3587	ug/L
Unknown		550 J	M	2.4175	ug/L
Unknown		90 Ј	M	2.5352	ug/L
Unknown		110 J	M	2.8561	ug/L
Unknown		170 J	M	3.7066	ug/L
Unknown		61 J	M	3.7707	ug/L
Unknown		160 J	M	3.9633	ug/L
Unknown		73 J	M	4.3163	ug/L
Unknown		430 J	M	4.4821	ug/L
Unknown		520 J	M	4.7442	ug/L
Unknown		50 J	M	5.0865	ug/L
Unknown		44 J	M	5.263	ug/L
Unknown		110 J	M	5.493	ug/L
Unknown		160 J	M	5.6	ug/L
Unknown		740 J	M	5.8032	ug/L
Unknown		280 J	M	5.9423	ug/L
Unknown		64 J	M	6.0279	ug/L
Unknown		640 J	M	7.3276	ug/L
Unknown		110 J	M	8.3331	ug/L
Unknown		52 J	M	9.2317	ug/L
NOTE(S):					

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MW-5

TOTAL Metals

Lot-Sample #: A0K220421-010		Matrix: WG
Date Sampled: 11/19/10 11:30	Date Received: 11/20/10	

		REPORTING	3		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Prep Batch #	: 0327012					
Arsenic	12.6	10.0	ug/L	SW846 6010B	11/23-11/29/10	MAD4G1AK
		Dilution Fact	or: 1			
T 3	10.0	2.0	/T	GHOAC COLOR	11 /02 11 /00 /10	W3D4G13T
Lead	10.2	3.0 Dilution Fact	_	SW846 6010B	11/23-11/29/10	MAD4GIAL
		Diracion race	01 - 1			
Selenium	7.8	5.0	ug/L	SW846 6010B	11/23-11/29/10	MAD4G1AM
		Dilution Fact	or: 1			
Thallium	ND	10.0	11 a /T,	SW846 6010B	11/23-11/29/10	MAD4G1AN
11141114		Dilution Fact	_	2.1010 00102	11, 20 11, 27, 10	1112 101111
Antimony	103	60.0	_	SW846 6010B	11/23-11/29/10	MAD4G1AP
		Dilution Fact	or: 1			
Beryllium	0.77 в	5.0	ug/L	SW846 6010B	11/23-11/29/10	MAD4G1AQ
		Dilution Fact	or: 1			
Cadmium	ND	5.0	110 /T	SW846 6010B	11/23-11/29/10	MXD//C1 XD
Cadilliulli	ND	Dilution Fact	J .	5W040 0010B	11/23-11/29/10	MAD4GIAR
Chromium	4.4 B	10.0	ug/L	SW846 6010B	11/23-11/29/10	MAD4G1AT
		Dilution Fact	or: 1			
Copper	19.1 B	25.0	uq/L	SW846 6010B	11/23-11/29/10	MAD4G1AU
		Dilution Fact	_	2	,	
Nickel	147	40.0 Dilution Fact	_	SW846 6010B	11/23-11/29/10	MAD4G1AV
		DITUCTION FACE	or. I			
Silver	ND	10.0	ug/L	SW846 6010B	11/23-11/29/10	MAD4G1AW
		Dilution Fact	or: 1			
Zinc	23.9 ј	20.0	ug/L	SW846 6010B	11/23-11/29/10	MXD4C1XY
Zinc	23.7 0	Dilution Fact		2M040 0010D	11/23 11/23/10	MADIGIAX
Mercury	ND	0.20	ug/L	SW846 7470A	11/23-11/24/10	MAD4G1AF
		Dilution Fact	or: 1			

NOTE(S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-5

DISSOLVED Metals

		REPORTING	;		PREPARATION- WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE ORDER #
Prep Batch #	: 0327012				
Arsenic	11.0	10.0	ug/L	SW846 6010B	11/23-11/29/10 MAD4G1A0
		Dilution Fact	or: 1		
T 3	2.1 B	2.0	/T	GHO 4 C CO 1 O D	11/22 11/20/10 ₩2₽40121
Lead	2.1 B	3.0 Dilution Fact	_	SW846 6010B	11/23-11/29/10 MAD4G1A1
		DITUOTON TUO	01 1		
Selenium	9.4	5.0	ug/L	SW846 6010B	11/23-11/29/10 MAD4G1A2
		Dilution Fact	or: 1		
Thallium	ND	10.0	11a / T.	SW846 6010B	11/23-11/29/10 MAD4G1A3
marriam	ND	Dilution Fact	_	5W010 0010B	11/23 11/25/10 PRD 101113
Antimony	104	60.0	_	SW846 6010B	11/23-11/29/10 MAD4G1A4
		Dilution Fact	or: 1		
Beryllium	0.70 в	5.0	ug/L	SW846 6010B	11/23-11/29/10 MAD4G1A5
_		Dilution Fact	or: 1		
Cadmium	NID	5.0	/T	GHO 46 6010D	11/22 11/20/10 MADAGIAC
Cadillium	ND	Dilution Fact	J .	SW846 6010B	11/23-11/29/10 MAD4G1A6
		DITUOTON TUO	01 1		
Chromium	2.4 B	10.0	ug/L	SW846 6010B	11/23-11/29/10 MAD4G1A7
		Dilution Fact	or: 1		
Copper	ND	25.0	11 a / T.	SW846 6010B	11/23-11/29/10 MAD4G1AA
00FF01	1.2	Dilution Fact	_	2.1010 00102	11, 10 11, 19, 10 1111 101111
Nickel	140	40.0	_	SW846 6010B	11/23-11/29/10 MAD4G1AC
		Dilution Fact	or: I		
Silver	ND	10.0	ug/L	SW846 6010B	11/23-11/29/10 MAD4G1AD
		Dilution Fact	or: 1		
m:	F 7 D T	20.0	/T	GHO 4 C CO 1 O D	11/22 11/20/10 WARAGIAN
Zinc	5.7 B,J	20.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10 MAD4G1AE
		Directon race	O		
Mercury	ND	0.20	ug/L	SW846 7470A	11/23-11/24/10 MAD4G1AG
		Dilution Fact	or: 1		
(a)					

NOTE(S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: TRIP BLANK

GC/MS Volatiles

Lot-Sample #...: A0K220421-011 Work Order #...: MAD4R1AA Matrix.....: WQ

Date Sampled...: 11/19/10 12:30 Date Received..: 11/20/10 Prep Date....: 12/03/10 Analysis Date..: 12/03/10

Prep Batch #...: 0340157

Dilution Factor: 1 Method.....: SW846 8260B

REPORTING AMETER RESULT LIMIT UNITS
tone ND 10 ug/L
tonitrile ND 20 ug/L
olein ND 20 ug/L
ylonitrile ND 20 ug/L
yl chloride ND 2.0 ug/L
zene ND 1.0 ug/L
modichloromethane ND 1.0 ug/L
moform ND 1.0 ug/L
momethane ND 1.0 ug/L
utanone (MEK) ND 10 ug/L
bon disulfide ND 1.0 ug/L
bon tetrachloride ND 1.0 ug/L
orobenzene ND 1.0 ug/L
oroethane ND 1.0 ug/L
oroform ND 1.0 ug/L
oromethane ND 1.0 ug/L
oroprene ND 2.0 ug/L
romochloromethane ND 1.0 ug/L
-Dibromo-3-chloro- ND 2.0 ug/L
propane
-Dibromoethane (EDB) ND 1.0 ug/L
romomethane ND 1.0 ug/L
ns-1,4-Dichloro- ND 1.0 ug/L
2-butene
hlorodifluoromethane ND 1.0 ug/L
-Dichloroethane ND 1.0 ug/L
-Dichloroethane ND 1.0 ug/L
-Dichloroethene ND 1.0 ug/L
ns-1,2-Dichloroethene ND 1.0 ug/L
-Dichloropropane ND 1.0 ug/L
-1,3-Dichloropropene ND 1.0 ug/L
ns-1,3-Dichloropropene ND 1.0 ug/L
-Dioxane ND 200 ug/L
ylbenzene ND 1.0 ug/L
yl methacrylate ND 1.0 ug/L
exanone ND 10 ug/L
omethane ND 1.0 ug/L
butyl alcohol ND 50 ug/L
hacrylonitrile ND 2.0 ug/L

Client Sample ID: TRIP BLANK

GC/MS Volatiles

Lot-Sample #...: A0K220421-011 Work Order #...: MAD4R1AA Matrix.....: WQ

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Methylene chloride	1.8	1.0	ug/L
Methyl methacrylate	ND	2.0	ug/L
4-Methyl-2-pentanone	ND	10	ug/L
(MIBK)			
Propionitrile	ND	4.0	ug/L
Styrene	ND	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
Vinyl acetate	ND	2.0	ug/L
Vinyl chloride	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Dibromofluoromethane	103	(75 - 121))
1,2-Dichloroethane-d4	95	(63 - 129))
Toluene-d8	97	(74 - 115))
4-Bromofluorobenzene	86	(66 - 117))

TRIP BLANK

GC/MS Volatiles

Lot-Sample #: A0K220421-011	Work Order #: MAD4R1AA	Matrix: WQ
MASS SPECTROMETER/DATA SYSTEM	MSDS) TENTATIVELY IDENTIFIED	COMPOUNDS
PARAMETER	ESTIMATED CAS # RESULT	RETENTION TIME UNITS

None

ug/L

QUALITY CONTROL SECTION

GC/MS Volatiles

Client Lot #...: A0K220421 Work Order #...: MATLP1AA Matrix.....: WATER

MB Lot-Sample #: A0L030000-199

Prep Date....: 12/02/10
Analysis Date..: 12/02/10
Prep Batch #...: 0337199

Dilution Factor: 1

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acetone	ND	10	ug/L	SW846 8260B
Acetonitrile	ND	20	ug/L	SW846 8260B
Acrolein	ND	20	ug/L	SW846 8260B
Acrylonitrile	ND	20	ug/L	SW846 8260B
Allyl chloride	ND	2.0	ug/L	SW846 8260B
Benzene	ND	1.0	ug/L	SW846 8260B
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B
Bromoform	ND	1.0	ug/L	SW846 8260B
Bromomethane	ND	1.0	ug/L	SW846 8260B
2-Butanone (MEK)	ND	10	ug/L	SW846 8260B
Carbon disulfide	ND	1.0	ug/L	SW846 8260B
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B
Chlorobenzene	ND	1.0	ug/L	SW846 8260B
Chloroethane	ND	1.0	ug/L	SW846 8260B
Chloroform	ND	1.0	ug/L	SW846 8260B
Chloromethane	ND	1.0	ug/L	SW846 8260B
Chloroprene	ND	2.0	ug/L	SW846 8260B
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B
1,2-Dibromo-3-chloro-	ND	2.0	ug/L	SW846 8260B
propane				
1,2-Dibromoethane (EDB)	ND	1.0	ug/L	SW846 8260B
Dibromomethane	ND	1.0	ug/L	SW846 8260B
trans-1,4-Dichloro-	ND	1.0	ug/L	SW846 8260B
2-butene				
Dichlorodifluoromethane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
1,4-Dioxane	ND	200	ug/L	SW846 8260B
Ethylbenzene	ND	1.0	ug/L	SW846 8260B
Ethyl methacrylate	ND	1.0	ug/L	SW846 8260B
2-Hexanone	ND	10	ug/L	SW846 8260B
Iodomethane	ND	1.0	ug/L	SW846 8260B
Isobutyl alcohol	ND	50	ug/L	SW846 8260B
Methacrylonitrile	ND	2.0	ug/L	SW846 8260B
Methylene chloride	ND	1.0	ug/L	SW846 8260B
Methyl methacrylate	ND	2.0	ug/L	SW846 8260B

GC/MS Volatiles

Client Lot #...: A0K220421 Work Order #...: MATLP1AA Matrix.....: WATER

		REPORTII	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
4-Methyl-2-pentanone	ND	10	ug/L	SW846 8260B
(MIBK)				
Propionitrile	ND	4.0	ug/L	SW846 8260B
Styrene	ND	1.0	ug/L	SW846 8260B
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B
Toluene	ND	1.0	ug/L	SW846 8260B
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B
1,1,2-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Trichloroethene	ND	1.0	ug/L	SW846 8260B
Trichlorofluoromethane	ND	1.0	ug/L	SW846 8260B
1,2,3-Trichloropropane	ND	1.0	ug/L	SW846 8260B
Vinyl acetate	ND	2.0	ug/L	SW846 8260B
Vinyl chloride	ND	1.0	ug/L	SW846 8260B
Xylenes (total)	ND	2.0	ug/L	SW846 8260B
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	98	(75 - 1	21)	
1,2-Dichloroethane-d4	109	(63 - 1	29)	
Toluene-d8	92	(74 - 13	15)	
4-Bromofluorobenzene	86	(66 - 1	17)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Method Blank Report

GC/MS Volatiles

Lot-Sample #: A0L030000-199 B Wo	ork Order #: MAT	TLP1AA	Matrix:	WATER
MASS SPECTROMETER/DATA SYSTEM (MS	SDS) TENTATIVELY	/ IDENTIFIED	COMPOUNDS	
PARAMETER	CAS #	ESTIMATED RESULT	RETENTION TIME	UNITS

ug/L

None

GC/MS Volatiles

Client Lot #...: A0K220421 Work Order #...: MAWWK1AA Matrix.....: WATER

MB Lot-Sample #: A0L060000-157

Prep Date....: 12/03/10
Analysis Date..: 12/03/10
Prep Batch #...: 0340157

Dilution Factor: 1

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acetone	ND	10	ug/L	SW846 8260B
Acetonitrile	ND	20	ug/L	SW846 8260B
Acrolein	ND	20	ug/L	SW846 8260B
Acrylonitrile	ND	20	ug/L	SW846 8260B
Allyl chloride	ND	2.0	ug/L	SW846 8260B
Benzene	ND	1.0	ug/L	SW846 8260B
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B
Bromoform	ND	1.0	ug/L	SW846 8260B
Bromomethane	ND	1.0	ug/L	SW846 8260B
2-Butanone (MEK)	ND	10	ug/L	SW846 8260B
Carbon disulfide	ND	1.0	ug/L	SW846 8260B
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B
Chlorobenzene	ND	1.0	ug/L	SW846 8260B
Chloroethane	ND	1.0	ug/L	SW846 8260B
Chloroform	ND	1.0	ug/L	SW846 8260B
Chloromethane	ND	1.0	ug/L	SW846 8260B
Chloroprene	ND	2.0	ug/L	SW846 8260B
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B
1,2-Dibromo-3-chloro-	ND	2.0	ug/L	SW846 8260B
propane				
1,2-Dibromoethane (EDB)	ND	1.0	ug/L	SW846 8260B
Dibromomethane	ND	1.0	ug/L	SW846 8260B
trans-1,4-Dichloro-	ND	1.0	ug/L	SW846 8260B
2-butene				
Dichlorodifluoromethane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
1,4-Dioxane	ND	200	ug/L	SW846 8260B
Ethylbenzene	ND	1.0	ug/L	SW846 8260B
Ethyl methacrylate	ND	1.0	ug/L	SW846 8260B
2-Hexanone	ND	10	ug/L	SW846 8260B
Iodomethane	ND	1.0	ug/L	SW846 8260B
Isobutyl alcohol	ND	50	ug/L	SW846 8260B
Methacrylonitrile	ND	2.0	ug/L	SW846 8260B
Methylene chloride	ND	1.0	ug/L	SW846 8260B
Methyl methacrylate	ND	2.0	ug/L	SW846 8260B

GC/MS Volatiles

Client Lot #...: A0K220421 Work Order #...: MAWWK1AA Matrix.....: WATER

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
4-Methyl-2-pentanone	ND	10	ug/L	SW846 8260B
(MIBK)				
Propionitrile	ND	4.0	ug/L	SW846 8260B
Styrene	ND	1.0	ug/L	SW846 8260B
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B
Toluene	ND	1.0	ug/L	SW846 8260B
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B
1,1,2-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Trichloroethene	ND	1.0	ug/L	SW846 8260B
Trichlorofluoromethane	ND	1.0	ug/L	SW846 8260B
1,2,3-Trichloropropane	ND	1.0	ug/L	SW846 8260B
Vinyl acetate	ND	2.0	ug/L	SW846 8260B
Vinyl chloride	ND	1.0	ug/L	SW846 8260B
Xylenes (total)	ND	2.0	ug/L	SW846 8260B
	PERCENT	RECOVER'	Y	
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	104	(75 - 1	21)	
1,2-Dichloroethane-d4	97	(63 - 1	29)	
Toluene-d8	95	(74 - 1)	15)	
4-Bromofluorobenzene	81	(66 - 1	17)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Method Blank Report

GC/MS Volatiles

Lot-Sample #: A0L060000-157 B Work	Order #: MA	WWK1AA	Matrix:	WATER
MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVEL	Y IDENTIFIED	COMPOUNDS	
PARAMETER None	CAS #	ESTIMATED RESULT	RETENTION TIME	<u>UNITS</u> ug/L

GC/MS Semivolatiles

REPORTING

UNITS

METHOD

LIMIT

Client Lot #...: A0K220421 Work Order #...: MAHN81AA Matrix....: WATER

MB Lot-Sample #: A0K240000-034

Prep Date....: 11/24/10 Analysis Date..: 12/03/10 Prep Batch #...: 0328034

RESULT

ND

ND

ND

ND

ND

ND

ND

ND

Dilution Factor: 1

PARAMETER

phenol

2-Chloronaphthalene

Dimethyl phthalate

2,6-Dinitrotoluene

2-Nitroaniline

Acenaphthylene

3-Nitroaniline

Acenaphthene

1.0 Phenol SW846 8270C ug/L bis(2-Chloroethyl)-ND 1.0 uq/L SW846 8270C ether 2-Chlorophenol ND 1.0 SW846 8270C uq/L 1.0 1,3-Dichlorobenzene ND uq/L SW846 8270C 1,4-Dichlorobenzene 1.0 SW846 8270C ND ug/L 1,2-Dichlorobenzene ND 1.0 ug/L SW846 8270C 1.0 2-Methylphenol ND ug/L SW846 8270C 2,2'-oxybis(1-Chloro-1.0 SW846 8270C ND ug/L propane) 4-Methylphenol 1.0 SW846 8270C ND uq/L N-Nitrosodi-n-propyl-ND 1.0 uq/L SW846 8270C amine Hexachloroethane ND 1.0 SW846 8270C ug/L Nitrobenzene ND 1.0 ug/L SW846 8270C Isophorone ND 1.0 uq/L SW846 8270C 2-Nitrophenol 2.0 SW846 8270C ND uq/L 2,4-Dimethylphenol ND 2.0 uq/L SW846 8270C bis(2-Chloroethoxy) ND 1.0 SW846 8270C ug/L methane 2.0 ND SW846 8270C 2,4-Dichlorophenol ug/L 1,2,4-Trichloro-SW846 8270C ND 1.0 ug/L benzene Naphthalene ND 0.20 uq/L SW846 8270C 2.0 4-Chloroaniline ND SW846 8270C uq/L Hexachlorobutadiene ND 1.0 SW846 8270C ug/L 2.0 4-Chloro-3-methylphenol ND uq/L SW846 8270C 2-Methylnaphthalene ND 0.20 SW846 8270C ug/L Hexachlorocyclopenta-ND 10 ug/L SW846 8270C diene 2,4,6-Trichloro-ND 5.0 SW846 8270C uq/L phenol 2,4,5-Trichloro-ND 5.0 ug/L SW846 8270C

(Continued on next page)

1.0

2.0

1.0

5.0

2.0

0.20

0.20

uq/L

ug/L

ug/L

uq/L

uq/L

ug/L

ug/L

SW846 8270C

GC/MS Semivolatiles

Client Lot #...: A0K220421 Work Order #...: MAHN81AA Matrix.....: WATER

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,4-Dinitrophenol	ND	5.0	ug/L	SW846 8270C
4-Nitrophenol	ND	5.0	ug/L	SW846 8270C
Dibenzofuran	ND	1.0	ug/L	SW846 8270C
2,4-Dinitrotoluene	ND	5.0	ug/L	SW846 8270C
Diethyl phthalate	ND	1.0	ug/L	SW846 8270C
4-Chlorophenyl phenyl	ND	2.0	ug/L	SW846 8270C
ether			-5.	
Fluorene	ND	0.20	ug/L	SW846 8270C
4-Nitroaniline	ND	2.0	ug/L	SW846 8270C
4,6-Dinitro-	ND	5.0	ug/L	SW846 8270C
2-methylphenol			-5.	
N-Nitrosodiphenylamine	ND	1.0	ug/L	SW846 8270C
4-Bromophenyl phenyl	ND	2.0	ug/L	SW846 8270C
ether			5, –	
Hexachlorobenzene	ND	0.20	ug/L	SW846 8270C
Pentachlorophenol	ND	5.0	ug/L	SW846 8270C
Phenanthrene	ND	0.20	ug/L	SW846 8270C
Anthracene	ND	0.20	ug/L	SW846 8270C
Carbazole	ND	1.0	ug/L	SW846 8270C
Di-n-butyl phthalate	ND	1.0	ug/L	SW846 8270C
Fluoranthene	ND	0.20	ug/L	SW846 8270C
Pyrene	ND	0.20	ug/L	SW846 8270C
Butyl benzyl phthalate	ND	1.0	ug/L	SW846 8270C
3,3'-Dichlorobenzidine	ND	5.0	ug/L	SW846 8270C
Benzo(a)anthracene	ND	0.20	ug/L	SW846 8270C
Chrysene	ND	0.20	ug/L	SW846 8270C
bis(2-Ethylhexyl)	1.9 J	2.0	ug/L	SW846 8270C
phthalate		_,,	5, -	2
Di-n-octyl phthalate	ND	1.0	ug/L	SW846 8270C
Benzo(b)fluoranthene	ND	0.20	ug/L	SW846 8270C
Benzo(k)fluoranthene	ND	0.20	ug/L	SW846 8270C
Benzo(a)pyrene	ND	0.20	ug/L	SW846 8270C
Indeno(1,2,3-cd)pyrene	ND	0.20	ug/L	SW846 8270C
Dibenz(a,h)anthracene	ND	0.20	ug/L	SW846 8270C
Benzo(ghi)perylene	ND	0.20	ug/L	SW846 8270C
			5, –	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	58	(27 - 111	 L)	
2-Fluorobiphenyl	58	(28 - 110		
Terphenyl-d14	75	(37 - 119		
Phenol-d5	51	(10 - 110		
2-Fluorophenol	15	(10 - 110		
2,4,6-Tribromophenol	62	(22 - 120		
· ·			•	

GC/MS Semivolatiles

Client Lot #...: A0K220421 Work Order #...: MAHN81AA Matrix.....: WATER

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

J Estimated result. Result is less than RL.

Method Blank Report

GC/MS Semivolatiles

ug/L

Lot-Sample #: A0K240000-034 B	Work Order #: MAHN8	31AA	Matrix: V	NATER
MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY I	DENTIFIED	COMPOUNDS	
PARAMETER			RETENTION TIME	UNITS

PARAMETER None

GC/MS Semivolatiles

Client Lot #...: A0K220421 Work Order #...: MAJ2M1AA Matrix.....: WATER

MB Lot-Sample #: A0K240000-322

Prep Date...: 11/25/10
Analysis Date..: 12/06/10
Prep Batch #...: 0328322

Dilution Factor: 1

PARAMETER RESULT LIMIT UNITS METHOD Phenol ND 1.0 ug/L SW846 8 bis(2-Chloroethyl)- ND 1.0 ug/L SW846 8

Phenol	ND	1.0	ug/L	SW846 8270C
bis(2-Chloroethyl)-	ND	1.0	ug/L	SW846 8270C
ether				
2-Chlorophenol	ND	1.0	ug/L	SW846 8270C
1,3-Dichlorobenzene	ND	1.0	ug/L	SW846 8270C
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8270C
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8270C
2-Methylphenol	ND	1.0	ug/L	SW846 8270C
2,2'-oxybis(1-Chloro-	ND	1.0	ug/L	SW846 8270C
propane)				
4-Methylphenol	ND	1.0	ug/L	SW846 8270C
N-Nitrosodi-n-propyl-	ND	1.0	ug/L	SW846 8270C
amine				
Hexachloroethane	ND	1.0	ug/L	SW846 8270C
Nitrobenzene	ND	1.0	ug/L	SW846 8270C
Isophorone	ND	1.0	ug/L	SW846 8270C
2-Nitrophenol	ND	2.0	ug/L	SW846 8270C
2,4-Dimethylphenol	ND	2.0	ug/L	SW846 8270C
bis(2-Chloroethoxy)	ND	1.0	ug/L	SW846 8270C
methane				
2,4-Dichlorophenol	ND	2.0	ug/L	SW846 8270C
1,2,4-Trichloro-	ND	1.0	ug/L	SW846 8270C
benzene				
Naphthalene	ND	0.20	ug/L	SW846 8270C
4-Chloroaniline	ND	2.0	ug/L	SW846 8270C
Hexachlorobutadiene	ND	1.0	ug/L	SW846 8270C
4-Chloro-3-methylphenol	ND	2.0	ug/L	SW846 8270C
2-Methylnaphthalene	ND	0.20	ug/L	SW846 8270C
Hexachlorocyclopenta-	ND	10	ug/L	SW846 8270C
diene				
2,4,6-Trichloro-	ND	5.0	ug/L	SW846 8270C
phenol				
2,4,5-Trichloro-	ND	5.0	ug/L	SW846 8270C
phenol				
2-Chloronaphthalene	ND	1.0	ug/L	SW846 8270C
2-Nitroaniline	ND	2.0	ug/L	SW846 8270C
Dimethyl phthalate	ND	1.0	ug/L	SW846 8270C
Acenaphthylene	ND	0.20	ug/L	SW846 8270C
2,6-Dinitrotoluene	ND	5.0	ug/L	SW846 8270C
3-Nitroaniline	ND	2.0	ug/L	SW846 8270C
Acenaphthene	ND	0.20	ug/L	SW846 8270C

GC/MS Semivolatiles

Client Lot #...: A0K220421 Work Order #...: MAJ2M1AA Matrix.....: WATER

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,4-Dinitrophenol	ND	5.0	ug/L	SW846 8270C
4-Nitrophenol	ND	5.0	ug/L	SW846 8270C
Dibenzofuran	ND	1.0	ug/L	SW846 8270C
2,4-Dinitrotoluene	ND	5.0	ug/L	SW846 8270C
Diethyl phthalate	ND	1.0	ug/L	SW846 8270C
4-Chlorophenyl phenyl	ND	2.0	ug/L	SW846 8270C
ether			-5.	
Fluorene	ND	0.20	ug/L	SW846 8270C
4-Nitroaniline	ND	2.0	ug/L	SW846 8270C
4,6-Dinitro-	ND	5.0	ug/L	SW846 8270C
2-methylphenol				
N-Nitrosodiphenylamine	ND	1.0	ug/L	SW846 8270C
4-Bromophenyl phenyl	ND	2.0	ug/L	SW846 8270C
ether			5, –	2.1.5 2.5 3.2 1.5 2
Hexachlorobenzene	ND	0.20	ug/L	SW846 8270C
Pentachlorophenol	ND	5.0	ug/L	SW846 8270C
Phenanthrene	ND	0.20	ug/L	SW846 8270C
Anthracene	ND	0.20	ug/L	SW846 8270C
Carbazole	ND	1.0	ug/L	SW846 8270C
Di-n-butyl phthalate	ND	1.0	ug/L	SW846 8270C
Fluoranthene	ND	0.20	ug/L	SW846 8270C
Pyrene	ND	0.20	ug/L	SW846 8270C
Butyl benzyl phthalate	ND	1.0	ug/L	SW846 8270C
3,3'-Dichlorobenzidine	ND	5.0	ug/L	SW846 8270C
Benzo(a)anthracene	ND	0.20	ug/L	SW846 8270C
Chrysene	ND	0.20	ug/L	SW846 8270C
bis(2-Ethylhexyl)	ND	2.0	ug/L	SW846 8270C
phthalate	ND	2.0	и9/ п	5W010 0270C
Di-n-octyl phthalate	ND	1.0	ug/L	SW846 8270C
Benzo(b)fluoranthene	ND	0.20	ug/L	SW846 8270C
Benzo(k)fluoranthene	ND	0.20	ug/L	SW846 8270C
Benzo(a)pyrene	ND	0.20	ug/L	SW846 8270C
Indeno(1,2,3-cd)pyrene	ND	0.20	ug/L	SW846 8270C
Dibenz(a,h)anthracene	ND	0.20	ug/L ug/L	SW846 8270C
Benzo(ghi)perylene	ND	0.20	ug/L ug/L	SW846 8270C
benzo(gni) per yrene	ND	0.20	ug/L	SW840 0270C
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	59	(27 - 111)		
2-Fluorobiphenyl	56	(27 - 111)		
Terphenyl-d14	78	(37 - 110)	•	
Phenol-d5	78 55			
2-Fluorophenol	30	(10 - 110)		
-		(10 - 110) (22 - 120)		
2,4,6-Tribromophenol	61	(22 - 120)	

GC/MS Semivolatiles

Client Lot #...: A0K220421 Work Order #...: MAJ2M1AA Matrix.....: WATER

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Method Blank Report

GC/MS Semivolatiles

Lot-Sample #: A0K240000-322 B Work Order #: MAJ2M1AA Matrix: WATER

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

NOTE(S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

GC/MS Semivolatiles

Client Lot #...: A0K220421 Work Order #...: MA3GJ1AA Matrix.....: WATER

MB Lot-Sample #: A0L090000-044

Prep Date...: 12/09/10
Analysis Date..: 12/10/10
Prep Batch #...: 0343044

Dilution Factor: 1

REPORTING RAMETER RESULT LIMIT UNITS enol ND 1.0 ug/L

PARAMETER	RESULT	LIMIT	<u>UNITS</u>	METHOD
Phenol	ND	1.0	ug/L	SW846 8270C
bis(2-Chloroethyl)-	ND	1.0	ug/L	SW846 8270C
ether				
2-Chlorophenol	ND	1.0	ug/L	SW846 8270C
1,3-Dichlorobenzene	ND	1.0	ug/L	SW846 8270C
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8270C
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8270C
2-Methylphenol	ND	1.0	ug/L	SW846 8270C
2,2'-oxybis(1-Chloro-	ND	1.0	ug/L	SW846 8270C
propane)				
4-Methylphenol	ND	1.0	ug/L	SW846 8270C
N-Nitrosodi-n-propyl-	ND	1.0	ug/L	SW846 8270C
amine				
Hexachloroethane	ND	1.0	ug/L	SW846 8270C
Nitrobenzene	ND	1.0	ug/L	SW846 8270C
Isophorone	ND	1.0	ug/L	SW846 8270C
2-Nitrophenol	ND	2.0	ug/L	SW846 8270C
2,4-Dimethylphenol	ND	2.0	ug/L	SW846 8270C
bis(2-Chloroethoxy)	ND	1.0	ug/L	SW846 8270C
methane				
2,4-Dichlorophenol	ND	2.0	ug/L	SW846 8270C
1,2,4-Trichloro-	ND	1.0	ug/L	SW846 8270C
benzene				
Naphthalene	ND	0.20	ug/L	SW846 8270C
4-Chloroaniline	ND	2.0	ug/L	SW846 8270C
Hexachlorobutadiene	ND	1.0	ug/L	SW846 8270C
4-Chloro-3-methylphenol	ND	2.0	ug/L	SW846 8270C
2-Methylnaphthalene	ND	0.20	ug/L	SW846 8270C
Hexachlorocyclopenta-	ND	10	ug/L	SW846 8270C
diene				
2,4,6-Trichloro-	ND	5.0	ug/L	SW846 8270C
phenol				
2,4,5-Trichloro-	ND	5.0	ug/L	SW846 8270C
phenol				
2-Chloronaphthalene	ND	1.0	ug/L	SW846 8270C
2-Nitroaniline	ND	2.0	ug/L	SW846 8270C
Dimethyl phthalate	ND	1.0	ug/L	SW846 8270C
Acenaphthylene	ND	0.20	ug/L	SW846 8270C
2,6-Dinitrotoluene	ND	5.0	ug/L	SW846 8270C
3-Nitroaniline	ND	2.0	ug/L	SW846 8270C
Acenaphthene	ND	0.20	ug/L	SW846 8270C

GC/MS Semivolatiles

Client Lot #...: A0K220421 Work Order #...: MA3GJ1AA Matrix.....: WATER

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,4-Dinitrophenol	ND	5.0	ug/L	SW846 8270C
4-Nitrophenol	ND	5.0	ug/L	SW846 8270C
Dibenzofuran	ND	1.0	ug/L	SW846 8270C
2,4-Dinitrotoluene	ND	5.0	ug/L	SW846 8270C
Diethyl phthalate	ND	1.0	ug/L	SW846 8270C
4-Chlorophenyl phenyl	ND	2.0	ug/L	SW846 8270C
ether				
Fluorene	ND	0.20	ug/L	SW846 8270C
4-Nitroaniline	ND	2.0	ug/L	SW846 8270C
4,6-Dinitro-	ND	5.0	ug/L	SW846 8270C
2-methylphenol				
N-Nitrosodiphenylamine	ND	1.0	ug/L	SW846 8270C
4-Bromophenyl phenyl	ND	2.0	ug/L	SW846 8270C
ether			5, =	
Hexachlorobenzene	ND	0.20	ug/L	SW846 8270C
Pentachlorophenol	ND	5.0	ug/L	SW846 8270C
Phenanthrene	ND	0.20	ug/L	SW846 8270C
Anthracene	ND	0.20	ug/L	SW846 8270C
Carbazole	ND	1.0	ug/L	SW846 8270C
Di-n-butyl phthalate	ND	1.0	ug/L	SW846 8270C
Fluoranthene	ND	0.20	ug/L	SW846 8270C
Pyrene	ND	0.20	ug/L	SW846 8270C
Butyl benzyl phthalate	ND	1.0	ug/L	SW846 8270C
3,3'-Dichlorobenzidine	ND	5.0	ug/L	SW846 8270C
Benzo(a)anthracene	ND	0.20	ug/L	SW846 8270C
Chrysene	ND	0.20	ug/L	SW846 8270C
bis(2-Ethylhexyl)	ND	2.0	ug/L	SW846 8270C
phthalate	ND	2.0	ид/ п	50010 02700
Di-n-octyl phthalate	ND	1.0	ug/L	SW846 8270C
Benzo(b)fluoranthene	ND	0.20	ug/L	SW846 8270C
Benzo(k)fluoranthene	ND	0.20	ug/L	SW846 8270C
Benzo(a)pyrene	ND	0.20	ug/L	SW846 8270C
Indeno(1,2,3-cd)pyrene	ND	0.20	ug/L	SW846 8270C
Dibenz(a,h)anthracene	ND	0.20	ug/L	SW846 8270C
Benzo(ghi)perylene	ND	0.20	ug/L ug/L	SW846 8270C
benzo(gni) per yrene	ND	0.20	ug/L	SW040 02/0C
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	63	(27 - 111)	<u> </u>	
2-Fluorobiphenyl	60	(28 - 110)		
Terphenyl-d14	78	(37 - 110)		
Phenol-d5	34	(37 - 119) $(10 - 110)$		
2-Fluorophenol	51	(10 - 110)		
2,4,6-Tribromophenol	65	(22 - 120)		
Z, 4, 0-111D1Omophemol	U O	(22 - 120	J	

GC/MS Semivolatiles

Client Lot #...: A0K220421 Work Order #...: MA3GJ1AA Matrix.....: WATER

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Environmental Resources Management Inc

Method Blank Report

GC/MS Semivolatiles

ug/L

Lot-Sample #: A0L090000-044 B Work	order #∶ MA	3GJ1AA	Matrix:	WATER
MASS SPECTROMETER/DATA SYSTEM (MSDS	S) TENTATIVEL	Y IDENTIFIED	COMPOUNDS	
PARAMETER	CAS #	ESTIMATED RESULT	RETENTION TIME	UNITS

None

TOTAL Metals

Client Lot #...: A0K220421 Matrix.....: WATER

PARAMETER	RESULT	REPORTING LIMIT		METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
MB Lot-Sample ‡					
Arsenic	ND	10.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10 MAFHC1AH
Lead	ND	3.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10 MAFHC1AJ
Selenium	ND	5.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10 MAFHC1AK
Thallium	ND	10.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10 MAFHC1AL
Antimony	ND	60.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10 MAFHC1AM
Beryllium	ND	5.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10 MAFHC1AN
Cadmium	ND	5.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10 MAFHC1AP
Chromium	ND	10.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10 MAFHC1AQ
Copper	ND	25.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10 MAFHC1AR
Nickel	ND	40.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10 MAFHC1AT
Silver	ND	10.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10 MAFHC1AU
Zinc	9.8 B	20.0 Dilution Fact	ug/L or: 1	SW846 6010B	11/23-11/29/10 MAFHC1AV
Mercury	ND	0.20 Dilution Fact	ug/L or: 1	SW846 7470A	11/23-11/24/10 MAFHC1AF
N∩TE/C).					

NOTE(S):

 $\label{lem:calculations} \textbf{Calculations} \ \text{are performed before rounding to avoid round-off errors in calculated results}.$

B Estimated result. Result is less than RL.

DISSOLVED Metals

Client Lot #...: A0K220421 Matrix....: WATER

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	
MB Lot-Sample ‡ Arsenic	: A0K230000- ND		ug/L	327012 SW846 6010B	11/23-11/29/10	MAFHC1AW
Lead	ND	3.0 Dilution Factor	_	SW846 6010B	11/23-11/29/10	MAFHC1AX
Selenium	ND	5.0 Dilution Factor	_	SW846 6010B	11/23-11/29/10	MAFHC1A0
Thallium	ND	10.0 Dilution Factor	_	SW846 6010B	11/23-11/29/10	MAFHC1A1
Antimony	ND	60.0 Dilution Factor	_	SW846 6010B	11/23-11/29/10	MAFHC1A2
Beryllium	ND	5.0 Dilution Facto	_	SW846 6010B	11/23-11/29/10	MAFHC1A3
Cadmium	ND	5.0 Dilution Facto	_	SW846 6010B	11/23-11/29/10	MAFHC1A4
Chromium	ND	10.0 Dilution Factor	_	SW846 6010B	11/23-11/29/10	MAFHC1A5
Copper	ND	25.0 Dilution Facto	_	SW846 6010B	11/23-11/29/10	MAFHC1AA
Nickel	ND	40.0 Dilution Factor	_	SW846 6010B	11/23-11/29/10	MAFHC1AC
Silver	ND	10.0 Dilution Factor		SW846 6010B	11/23-11/29/10	MAFHC1AD
Zinc	9.8 B	20.0 Dilution Factor	ug/L or: 1	SW846 6010B	11/23-11/29/10	MAFHC1AE
Mercury	ND	0.20 Dilution Factor	ug/L or: 1	SW846 7470A	11/23-11/24/10	MAFHC1AG
NOTE (a) •						

Calculations are performed before rounding to avoid round-off errors in calculated results.

B Estimated result. Result is less than RL.

GC/MS Volatiles

Client Lot #...: A0K220421 Work Order #...: MATLP1AC-LCS Matrix.....: WATER

LCS Lot-Sample#: A0L030000-199 MATLP1AD-LCSD

Prep Batch #...: 0337199

Dilution Factor: 1

	PERCENT	RECOVERY	1	RPD	
PARAMETER	RECOVERY	LIMITS	RPD	<u>LIMITS</u>	METHOD
Benzene	95	(83 - 112)			SW846 8260B
	96	(83 - 112)	1.3	(0-30)	SW846 8260B
Chlorobenzene	94	(85 - 110)			SW846 8260B
	95	(85 - 110)	0.48	(0-30)	SW846 8260B
1,1-Dichloroethene	90	(78 - 131)			SW846 8260B
	95	(78 - 131)	5.1	(0-30)	SW846 8260B
Toluene	91	(84 - 111)			SW846 8260B
	89	(84 - 111)	2.3	(0-30)	SW846 8260B
Trichloroethene	105	(76 - 117)			SW846 8260B
	109	(76 - 117)	3.1	(0-20)	SW846 8260B
		PERCENT	RECOVE	RY	
SURROGATE		RECOVERY	LIMITS		
Dibromofluoromethane		97	(75 -	121)	
		99	(75 -	121)	
1,2-Dichloroethane-d4		105	(63 -	129)	
		107	(63 -	129)	
Toluene-d8		92	(74 -	115)	
		92	(74 -	115)	
4-Bromofluorobenzene		89	(66 –	•	
		93	(66 –	,	

NOTE(S):

 $\label{lem:calculations} \textbf{Calculations are performed before rounding to avoid round-off errors in calculated results.}$

GC/MS Volatiles

Client Lot #...: A0K220421 Work Order #...: MAWWK1AC-LCS Matrix.....: WATER

LCS Lot-Sample#: A0L060000-157 MAWWK1AD-LCSD

Prep Batch #...: 0340157

Dilution Factor: 1

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	<u>LIMITS</u>	METHOD
Benzene	97	(83 - 112)			SW846 8260B
	96	(83 - 112)	1.4	(0-30)	SW846 8260B
Chlorobenzene	101	(85 - 110)			SW846 8260B
	100	(85 - 110)	1.2	(0-30)	SW846 8260B
1,1-Dichloroethene	97	(78 - 131)			SW846 8260B
	96	(78 - 131)	1.3	(0-30)	SW846 8260B
Toluene	104	(84 - 111)			SW846 8260B
	103	(84 - 111)	0.64	(0-30)	SW846 8260B
Trichloroethene	105	(76 - 117)			SW846 8260B
	104	(76 - 117)	1.1	(0-20)	SW846 8260B
		PERCENT	RECOVE	RY	
SURROGATE		RECOVERY	LIMITS	5	
Dibromofluoromethane		97	(75 -	121)	
		98	(75 –	121)	
1,2-Dichloroethane-d4		90	(63 -	129)	
		91	(63 -	129)	
Toluene-d8		103	(74 -	115)	
		102	(74 -	115)	
4-Bromofluorobenzene		97	(66 –	117)	
		100	(66 -	117)	
			•	,	

NOTE(S):

 $\label{lem:calculations} \textbf{Calculations are performed before rounding to avoid round-off errors in calculated results.}$

GC/MS Semivolatiles

Client Lot #...: A0K220421 Work Order #...: MAHN81AC Matrix.....: WATER

LCS Lot-Sample#: A0K240000-034

Prep Batch #...: 0328034

Dilution Factor: 1

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
Phenol	62	(14 - 112)	SW846 8270C
2-Chlorophenol	60	(27 - 110)	SW846 8270C
1,4-Dichlorobenzene	48	(19 - 110)	SW846 8270C
N-Nitrosodi-n-propyl-	64	(37 - 121)	SW846 8270C
amine			
1,2,4-Trichloro-	52	(25 - 110)	SW846 8270C
benzene			
4-Chloro-3-methylphenol	67	(39 - 110)	SW846 8270C
Acenaphthene	64	(40 - 110)	SW846 8270C
4-Nitrophenol	64	(12 - 130)	SW846 8270C
2,4-Dinitrotoluene	74	(52 - 123)	SW846 8270C
Pentachlorophenol	54	(26 - 110)	SW846 8270C
Pyrene	64	(55 - 120)	SW846 8270C
		PERCENT	RECOVERY
SURROGATE		RECOVERY	<u>LIMITS</u>
Nitrobenzene-d5		63	(27 - 111)
2-Fluorobiphenyl		63	(28 - 110)
Terphenyl-d14		76	(37 - 119)
Phenol-d5		62	(10 - 110)
2-Fluorophenol		46	(10 - 110)
2,4,6-Tribromophenol		71	(22 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Semivolatiles

Client Lot #...: A0K220421 Work Order #...: MAJ2M1AC-LCS Matrix.....: WATER

LCS Lot-Sample#: A0K240000-322 MAJ2M1AD-LCSD

Prep Batch #...: 0328322

Dilution Factor: 1

I	PERCENT	RECOVERY		RPD		
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOL)
Phenol	49	(14 - 112)			SW846	8270C
!	58	(14 - 112)	18	(0-30)	SW846	8270C
2-Chlorophenol	45	(27 - 110)			SW846	8270C
!	51	(27 - 110)	13	(0-30)	SW846	8270C
1,4-Dichlorobenzene	36	(19 - 110)			SW846	8270C
!	55 p	(19 - 110)	41	(0-30)	SW846	8270C
N-Nitrosodi-n-propyl- !	53	(37 - 121)			SW846	8270C
	65	(37 - 121)	20	(0-30)	SW846	8270C
1,2,4-Trichloro-	38	(25 - 110)			SW846	8270C
!	54 p	(25 - 110)	35	(0-30)	SW846	8270C
4-Chloro-3-methylphenol	60	(39 - 110)			SW846	8270C
	64	(39 - 110)	6.0	(0-30)	SW846	8270C
Acenaphthene	53	(40 - 110)			SW846	8270C
	60	(40 - 110)	13	(0-30)	SW846	8270C
4-Nitrophenol	69	(12 - 130)			SW846	8270C
	66	(12 - 130)	4.5	(0-30)	SW846	8270C
2,4-Dinitrotoluene	69	(52 - 123)			SW846	8270C
•	68	(52 - 123)	1.1	(0-30)	SW846	8270C
Pentachlorophenol	61	(26 - 110)			SW846	8270C
	62	(26 - 110)	0.63	(0-30)	SW846	8270C
Pyrene	64	(55 - 120)			SW846	8270C
•	62	(55 - 120)	2.5	(0-30)	SW846	8270C
CVPD CC1 TF		PERCENT	RECOV			
SURROGATE		RECOVERY	LIMIT			
Nitrobenzene-d5		47	(27 -			
2 Elwarahirhanal		62	(27 -			
2-Fluorobiphenyl		46	(28 -			
Terphenyl-d14		60 73	(28 - (37 -			
rerphenyr-dr4			(37 -			
Phenol-d5		75 45				
FIIGHOT-03		57	(10 -			
2-Fluorophenol		28	(10 - (10 -			
z ridorophenor		26	(10 -			
2,4,6-Tribromophenol		66	(22 -			

GC/MS Semivolatiles

Client Lot #...: A0K220421 Work Order #...: MAJ2M1AC-LCS Matrix....: WATER

LCS Lot-Sample#: A0K240000-322 MAJ2M1AD-LCSD

PERCENT RECOVERY

SURROGATE RECOVERY LIMITS
68 (22 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

p Relative percent difference (RPD) is outside stated control limits.

GC/MS Semivolatiles

Client Lot #...: A0K220421 Work Order #...: MA3GJ1AC-LCS Matrix.....: WATER

LCS Lot-Sample#: A0L090000-044 MA3GJ1AD-LCSD

Prep Batch #...: 0343044

Dilution Factor: 1

	PERCENT	RECOVERY	RPD	
PARAMETER	RECOVERY	LIMITS	RPD LIMITS	METHOD
Phenol	38	(14 - 112)	RID DIMITO	SW846 8270C
	36	(14 - 112)	6.1 (0-30)	
2-Chlorophenol	70	(27 - 110)	(, ,	SW846 8270C
	64	(27 - 110)	9.8 (0-30)	
1,4-Dichlorobenzene	65	(19 - 110)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	SW846 8270C
•	56	(19 - 110)	15 (0-30)	
N-Nitrosodi-n-propyl- amine	75	(37 - 121)		SW846 8270C
	69	(37 - 121)	8.6 (0-30)	SW846 8270C
1,2,4-Trichloro- benzene	65	(25 - 110)		SW846 8270C
	59	(25 - 110)	11 (0-30)	SW846 8270C
4-Chloro-3-methylphenol	72	(39 - 110)		SW846 8270C
	68	(39 - 110)	5.3 (0-30)	SW846 8270C
Acenaphthene	69	(40 - 110)		SW846 8270C
	67	(40 - 110)	4.0 (0-30)	SW846 8270C
4-Nitrophenol	45	(12 - 130)		SW846 8270C
	41	(12 - 130)	10 (0-30)	SW846 8270C
2,4-Dinitrotoluene	74	(52 - 123)		SW846 8270C
	73	(52 - 123)	1.2 (0-30)	SW846 8270C
Pentachlorophenol	63	(26 - 110)		SW846 8270C
	66	(26 - 110)	4.4 (0-30)	
Pyrene	69	(55 - 120)		SW846 8270C
	70	(55 - 120)	1.9 (0-30)	SW846 8270C
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
Nitrobenzene-d5		74	(27 - 111)	
O Elmanabirband		69 71	(27 - 111)	
2-Fluorobiphenyl		71 66	(28 - 110)	
Terphenyl-d14		82	(28 - 110) (37 - 119)	
Ter brient t - ar 4		83	(37 - 119) (37 - 119)	
Phenol-d5		38	(37 - 119) (10 - 110)	
11101101 43		34	(10 - 110) $(10 - 110)$	
2-Fluorophenol		54	(10 - 110)	
2 1 1401 OPTICITOT		50	(10 - 110)	
2,4,6-Tribromophenol		75	(22 - 120)	

GC/MS Semivolatiles

Client Lot #...: A0K220421 Work Order #...: MA3GJ1AC-LCS Matrix.....: WATER

LCS Lot-Sample#: A0L090000-044 MA3GJ1AD-LCSD

PERCENT RECOVERY

SURROGATE RECOVERY LIMITS

74 (22 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

TOTAL Metals

Client Lot #...: A0K220421 Matrix.....: WATER

<u>PARAMETER</u>	PERCENT RECOVERY	RECOVERY LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
LCS Lot-Sample#: Arsenic	A0K230000- 97	_	sw846 6010B or: 1	11/23-11/29/10	MAFHC1CD
Lead	98	(80 - 120) Dilution Factor	SW846 6010B	11/23-11/29/10	MAFHC1CE
Selenium	100	(80 - 120) Dilution Facto	SW846 6010B	11/23-11/29/10	MAFHC1CF
Thallium	97	(80 - 120) Dilution Facto	SW846 6010B	11/23-11/29/10	MAFHC1CG
Antimony	99	(80 - 120) Dilution Facto	SW846 6010B	11/23-11/29/10	MAFHC1CH
Beryllium	106	(80 - 120) Dilution Factor	SW846 6010B	11/23-11/29/10	MAFHC1CJ
Cadmium	103	(80 - 120) Dilution Factor	SW846 6010B	11/23-11/29/10	MAFHC1CK
Chromium	99	(80 - 120) Dilution Facto	SW846 6010B	11/23-11/29/10	MAFHC1CL
Copper	100	(80 - 120) Dilution Facto	SW846 6010B	11/23-11/29/10	MAFHC1CM
Nickel	106	(80 - 120) Dilution Facto	SW846 6010B	11/23-11/29/10	MAFHC1CN
Silver	108	(80 - 120) Dilution Factor	SW846 6010B	11/23-11/29/10	MAFHC1CP
Zinc	107	(80 - 120) Dilution Factor	SW846 6010B	11/23-11/29/10	MAFHC1CQ
Mercury	97	(81 - 123) Dilution Factor	SW846 7470A	11/23-11/24/10	MAFHC1CA

NOTE(S):

 $\label{lem:calculations} \textbf{Calculations} \ \textbf{are} \ \textbf{performed} \ \textbf{before} \ \textbf{rounding} \ \textbf{to} \ \textbf{avoid} \ \textbf{round-off} \ \textbf{errors} \ \textbf{in} \ \textbf{calculated} \ \textbf{results}.$

DISSOLVED Metals

Client Lot #...: A0K220421 Matrix.....: WATER

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
LCS Lot-Sample#: Arsenic	A0K230000- 97	_	tch #: 0327012 SW846 6010B or: 1	11/23-11/29/10	MAFHC1CR
Lead	98	(80 - 120) Dilution Facto	SW846 6010B	11/23-11/29/10	MAFHC1CT
Selenium	100	(80 - 120) Dilution Facto	SW846 6010B	11/23-11/29/10	MAFHC1CU
Thallium	97	(80 - 120) Dilution Facto	SW846 6010B	11/23-11/29/10	MAFHC1CV
Antimony	99	(80 - 120) Dilution Facto	SW846 6010B	11/23-11/29/10	MAFHC1CW
Beryllium	106	(80 - 120) Dilution Facto	SW846 6010B	11/23-11/29/10	MAFHC1CX
Cadmium	103	(80 - 120) Dilution Facto	SW846 6010B	11/23-11/29/10	MAFHC1C0
Chromium	99	(80 - 120) Dilution Facto	SW846 6010B	11/23-11/29/10	MAFHC1C1
Copper	100	(80 - 120) Dilution Facto	SW846 6010B	11/23-11/29/10	MAFHC1A6
Nickel	106	(80 - 120) Dilution Facto	SW846 6010B	11/23-11/29/10	MAFHC1A7
Silver	108	(80 - 120) Dilution Facto	SW846 6010B	11/23-11/29/10	MAFHC1A8
Zinc	107	(80 - 120) Dilution Facto	SW846 6010B	11/23-11/29/10	MAFHC1A9
Mercury	97	(81 - 123) Dilution Facto	SW846 7470A	11/23-11/24/10	MAFHC1CC

NOTE(S):

 $\label{lem:calculations} \textbf{Calculations} \ \textbf{are} \ \textbf{performed} \ \textbf{before} \ \textbf{rounding} \ \textbf{to} \ \textbf{avoid} \ \textbf{round-off} \ \textbf{errors} \ \textbf{in} \ \textbf{calculated} \ \textbf{results}.$

GC/MS Volatiles

Client Lot #...: A0K220421 Work Order #...: MAD371AX-MS Matrix.....: WG

MS Lot-Sample #: A0K220421-004 MAD371A0-MSD

Date Sampled...: 11/18/10 13:35 Date Received..: 11/20/10
Prep Date....: 12/02/10 Analysis Date..: 12/02/10

Prep Batch #...: 0337199

Dilution Factor: 1

	PERCENT	RECOVERY		RPD		
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	<u>METHOI</u>)
Benzene	91	(72 - 121)			SW846	8260B
	97	(72 - 121)	5.6	(0-30)	SW846	8260B
Chlorobenzene	91	(80 - 110)			SW846	8260B
	94	(80 - 110)	4.0	(0-30)	SW846	8260B
1,1-Dichloroethene	86	(74 - 135)			SW846	8260B
	97	(74 - 135)	13	(0-30)	SW846	8260B
Toluene	88	(78 - 114)			SW846	8260B
	93	(78 - 114)	4.4	(0-30)	SW846	8260B
Trichloroethene	104	(66 - 120)			SW846	8260B
	110	(66 - 120)	5.8	(0-30)	SW846	8260B
		PERCENT		RECOVERY		
SURROGATE	_	<u>RECOVERY</u>		LIMITS	_	
Dibromofluoromethane		96		(75 - 121)	
		103		(75 - 121)	
1,2-Dichloroethane-d4		108		(63 - 129)	
		110		(63 - 129)	
Toluene-d8		92		(74 - 115)	
		96		(74 - 115)	
4-Bromofluorobenzene		89		(66 - 117)	
		94		(66 - 117)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #...: A0K220421 Work Order #...: MAD601AC-MS Matrix.....: WATER

MS Lot-Sample #: A0K220428-001 MAD601AD-MSD

Prep Batch #...: 0340157

Dilution Factor: 1

	PERCENT	RECOVERY		RPD		
PARAMETER	RECOVERY	LIMITS	<u>RPD</u>	LIMITS	<u>METHOI</u>)
Benzene	94	(72 - 121)			SW846	8260B
	91	(72 - 121)	3.2	(0-30)	SW846	8260B
Chlorobenzene	95	(80 - 110)			SW846	8260B
	94	(80 - 110)	1.8	(0-30)	SW846	8260B
1,1-Dichloroethene	98	(74 - 135)			SW846	8260B
	98	(74 - 135)	0.30	(0-30)	SW846	8260B
Toluene	99	(78 - 114)			SW846	8260B
	98	(78 - 114)	1.9	(0-30)	SW846	8260B
Trichloroethene	104	(66 - 120)			SW846	8260B
	100	(66 - 120)	4.8	(0-30)	SW846	8260B
		PERCENT		RECOVERY		
SURROGATE	-	<u>RECOVERY</u>		LIMITS	_	
Dibromofluoromethane		99		(75 - 121)	
		100		(75 - 121)	
1,2-Dichloroethane-d4		88		(63 - 129)	
		89		(63 - 129)	
Toluene-d8		101		(74 - 115)	
		102		(74 - 115)	
4-Bromofluorobenzene		100		(66 - 117)	
		101		(66 - 117)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Semivolatiles

MS Lot-Sample #: A0K220421-004 MAD371A3-MSD

Date Sampled...: 11/18/10 13:35 Date Received..: 11/20/10
Prep Date....: 11/24/10 Analysis Date..: 12/03/10

Prep Batch #...: 0328034

Dilution Factor: 1

	PERCENT	RECOVERY		RPD		
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOI)
Phenol	66	(16 - 110)				8270C
	56	(16 - 110)	16	(0-30)	SW846	8270C
2-Chlorophenol	64	(26 - 110)			SW846	8270C
-	55	(26 - 110)	16	(0-30)	SW846	8270C
1,4-Dichlorobenzene	58	(17 - 110)			SW846	8270C
	48	(17 - 110)	19	(0-30)	SW846	8270C
N-Nitrosodi-n-propyl- amine	66	(25 - 119)			SW846	8270C
	60	(25 - 119)	9.2	(0-30)	SW846	8270C
1,2,4-Trichloro- benzene	54	(25 - 110)			SW846	8270C
	52	(25 - 110)	4.6	(0-30)	SW846	8270C
4-Chloro-3-methylphenol	71	(33 - 110)			SW846	8270C
	67	(33 - 110)	5.9	(0-30)	SW846	8270C
Acenaphthene	65	(36 - 110)			SW846	8270C
	62	(36 - 110)	3.9	(0-30)	SW846	8270C
4-Nitrophenol	68	(13 - 127)			SW846	8270C
	63	(13 - 127)	7.7	(0-30)	SW846	8270C
2,4-Dinitrotoluene	77	(46 - 119)			SW846	8270C
	71	(46 - 119)	8.6	(0-30)	SW846	8270C
Pentachlorophenol	74	(23 - 110)			SW846	8270C
	70	(23 - 110)	5.7	(0-30)	SW846	8270C
Pyrene	65	(54 - 115)				8270C
	62	(54 - 115)	4.8	(0-30)	SW846	8270C
		PERCENT		RECOVERY		
SURROGATE	=	RECOVERY		LIMITS	_	
Nitrobenzene-d5		63		(27 - 111		
		55		(27 - 111	-	
2-Fluorobiphenyl		62		(28 - 110		
		57		(28 - 110		
Terphenyl-d14		77		(37 - 119		
-1 1 15		70		(37 - 119		
Phenol-d5		64		(10 - 110	-	
1		54		(10 - 110		
2-Fluorophenol		50		(10 - 110	-	
		35		(10 - 110)	

GC/MS Semivolatiles

Client Lot #...: A0K220421 Work Order #...: MAD371A2-MS Matrix.....: WG

MS Lot-Sample #: A0K220421-004 MAD371A3-MSD

 SURROGATE
 PERCENT
 RECOVERY

 2,4,6-Tribromophenol
 76
 (22 - 120)

 66
 (22 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

TOTAL Metals

Client Lot #...: A0K220421 Matrix.....: WG

Date Sampled...: 11/18/10 13:35 Date Received..: 11/20/10

PARAMETER	PERCENT RECOVERY	RECOVERY RPD LIMITS RPD LIMITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
MS Lot-Sampl Arsenic	e #: A0K22 97 97	0421-004 Prep Batch # (75 - 125) (75 - 125) 0.11 (0-20) Dilution Factor: 1	SW846 6010B	11/23-11/29/10 MAD371A5 11/23-11/29/10 MAD371A6
Lead	97 97	(75 - 125) (75 - 125) 0.20 (0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	11/23-11/29/10 MAD371A8 11/23-11/29/10 MAD371A9
Selenium	99 100	(75 - 125) (75 - 125) 0.52 (0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	11/23-11/29/10 MAD371C0 11/23-11/29/10 MAD371CD
Thallium	95 96	(75 - 125) (75 - 125) 0.95 (0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	11/23-11/29/10 MAD371CF 11/23-11/29/10 MAD371CF
Antimony	92 99	(75 - 125) (75 - 125) 7.6 (0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	11/23-11/29/10 MAD371CM 11/23-11/29/10 MAD371CM
Beryllium	104 104	(75 - 125) (75 - 125) 0.45 (0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	11/23-11/29/10 MAD371CM 11/23-11/29/10 MAD371CM
Cadmium	101 101	(75 - 125) (75 - 125) 0.08 (0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	11/23-11/29/10 MAD371CQ 11/23-11/29/10 MAD371CR
Chromium	99 99	(75 - 125) (75 - 125) 0.14 (0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	11/23-11/29/10 MAD371CU 11/23-11/29/10 MAD371CU
Copper	100 100	(75 - 125) (75 - 125) 0.68 (0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	11/23-11/29/10 MAD371CX 11/23-11/29/10 MAD371CX
Nickel	104 105	(75 - 125) (75 - 125) 1.2 (0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	11/23-11/29/10 MAD371C3 11/23-11/29/10 MAD371C3

TOTAL Metals

Client Lot #...: A0K220421 Matrix.....: WG

Date Sampled...: 11/18/10 13:35 Date Received..: 11/20/10

	PERCENT	RECOVERY RPD		PREPARATION- WORK
PARAMETER	RECOVERY	<u>LIMITS RPD LIMITS</u>	METHOD	ANALYSIS DATE ORDER #
Silver	109	(75 - 125)	SW846 6010B	11/23-11/29/10 MAD371C5
	109	(75 - 125) 0.08 (0-20)	SW846 6010B	11/23-11/29/10 MAD371C6
		Dilution Factor: 1		
Zinc	105	(75 - 125)	SW846 6010B	11/23-11/29/10 MAD371C8
	107	(75 - 125) 1.6 (0-20)	SW846 6010B	11/23-11/29/10 MAD371C9
		Dilution Factor: 1		
Mercury	98	(69 - 134)	SW846 7470A	11/23-11/24/10 MAD371AO
ricioury	94	(69 - 134) 4.4 (0-20)		11/23-11/24/10 MAD371AR
		Dilution Factor: 1	2	11, 20 11, 21, 10 11100, 11110

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

DISSOLVED Metals

Client Lot #...: A0K220421 Matrix.....: WG

Date Sampled...: 11/18/10 13:35 Date Received..: 11/20/10

PARAMETER	PERCENT RECOVERY	RECOVERY RPD LIMITS RPD LIMITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
MS Lot-Sampl	e #: A0K22	0421-004 Prep Batch #	.: 0327012	
Arsenic	97	(75 - 125)		11/23-11/29/10 MAD371DC
	95	(75 - 125) 1.6 (0-20)	SW846 6010B	11/23-11/29/10 MAD371DD
		Dilution Factor: 1		
Lead	97	(75 - 125)	SW846 6010B	11/23-11/29/10 MAD371DF
Lead	95	(75 - 125) 1.2 (0-20)		11/23-11/29/10 MAD371DG
		Dilution Factor: 1		
a 1 '	0.0	(85 105)	GTT0.4.6	11 /02 11 /02 /12
Selenium	99 98	(75 - 125) (75 - 125) 0.76 (0-20)		11/23-11/29/10 MAD371DJ 11/23-11/29/10 MAD371DK
	90	Dilution Factor: 1	2W040 0010B	11/23-11/29/10 MAD3/1DK
Thallium	96	(75 - 125)		11/23-11/29/10 MAD371DM
	94	(75 - 125) 1.2 (0-20)	SW846 6010B	11/23-11/29/10 MAD371DN
		Dilution Factor: 1		
Antimony	99	(75 - 125)	SW846 6010B	11/23-11/29/10 MAD371DQ
	100	(75 - 125) 1.5 (0-20)		11/23-11/29/10 MAD371DR
		Dilution Factor: 1		
D 1 1 d	104	/75 105)	GHO 4 C CO 1 O D	11/02 11/00/10 MAD 271DII
Beryllium	104 102	(75 - 125) (75 - 125) 1.5 (0-20)		11/23-11/29/10 MAD371DU 11/23-11/29/10 MAD371DV
	102	Dilution Factor: 1	5W040 0010B	11/23 11/23/10 MAD3/1DV
Cadmium	101	(75 - 125)		11/23-11/29/10 MAD371DX
	100	(75 - 125) 0.63 (0-20)	SW846 6010B	11/23-11/29/10 MAD371D0
		Dilution Factor: 1		
Chromium	98	(75 - 125)	SW846 6010B	11/23-11/29/10 MAD371D2
	97	(75 - 125) 1.1 (0-20)	SW846 6010B	11/23-11/29/10 MAD371D3
		Dilution Factor: 1		
Connor	100	(75 125)	SW846 6010B	11/23-11/29/10 MAD371AC
Copper	99	(75 - 125) (75 - 125) 0.80 (0-20)	SW846 6010B	11/23-11/29/10 MAD3/1AC 11/23-11/29/10 MAD371AD
		Dilution Factor: 1	2010 00100	,,,,
Nickel	105	(75 - 125)	SW846 6010B	11/23-11/29/10 MAD371AF
	104	(75 - 125) 1.0 (0-20)	SW846 6010B	11/23-11/29/10 MAD371AG
		Dilution Factor: 1		

DISSOLVED Metals

Client Lot #...: A0K220421 Matrix.....: WG

Date Sampled...: 11/18/10 13:35 Date Received..: 11/20/10

	PERCENT	RECOVERY	RPD		PREPARATION-	WORK
PARAMETER	RECOVERY	LIMITS RPD	LIMITS	METHOD	ANALYSIS DATE	ORDER #
Silver	109	(75 - 125)		SW846 6010B	11/23-11/29/10	MAD371AJ
	108	(75 - 125) 0.65	(0-20)	SW846 6010B	11/23-11/29/10	MAD371AK
		Dilution Fac	tor: 1			
Zinc	105	(75 - 125)		SW846 6010B	11/23-11/29/10	MAD371AM
	104	(75 - 125) 0.69	(0-20)	SW846 6010B	11/23-11/29/10	MAD371AN
		Dilution Fac	tor: 1			
Mercury	98	(69 - 134)		SW846 7470A	11/23-11/24/10	MAD371AU
	103	(69 - 134) 5.0	(0-20)	SW846 7470A	11/23-11/24/10	
		Dilution Fac	tor: 1			

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Chain of Custody Record

TestAmerica

Address: 30775 City/State/Zip: Сомрану Маше: Project Name: Saran 740 SAS Trive HO BANDEINGE RO. 0350 1 1 1 1 1 1 1 1 2017E TestAmerica Laboratory location:
Regulatory program: Sarah word @ em. com Client Project Manager: 05 to - 245 - 04h SARAH WOOD DW NORTH NPDES HARDN FREDERICY
HOSHZ 0750 2 weeks CANTON CRA 3 weeks 2 weeks Other Telephone: ナロレシ TALS Analyses THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc. COC No: 25 2 cocs

Relinquished by:	Relinguished by		Special Instructions/QC Requirements &	identification	MIN-2	MW-8	h-MW	MW-6	FINSE BUYNE :	MW-3 M5/D	MW-3	ہے	_	Mw-1	Sample identification	PO#	Project Number:
Company:	Company: Ern		Onth Illiam] Skin Tribot	11/19/10 10	11/19/10 09	4101/8/11	11)18/10/6	F2		N. 13 10 13	organtin	11/18/10	11/18/10 09	Sample Date		Shipping/Tracking No:
Date/Time:	Date/Time:	11/19/10/		Unknown	×	7 2	X 2	× ~	7 2	×	7 2	X 2	7	7 2	Air Aqueous Sediment Solid Other: H2SO4 HNO3	Virginia (**)	
Received by:	Received by: UPS	300				3 2 76	3 2 YG	3 2 y 6	3 2 Yh	6 4 YG)	3 2 Y 6 Y	2 / 5	3 2 767	3 2 16)	Compre		2 days
Company:	Company:	The state of the s		re retained longer than 1 month) Archive For	XXXX	XXXX	XX XX	××××	XXX	XXX	× × ×	XXXX	XXXX	×××	SVO Disor		MET
Date/Time:	Date/Lime:			Months											Sample Specific Notes / Special Instructions:		44-4-00 A
	Company: Date/Time: Received by: Company:	Company: Date/Time: 14118164 Received by: UPS Company: Company: Date/Time: Received by: Company:	Company: EAM Date/Time: 1/1/9/10/8300 Received by: UPS Company: Company:	ons/QC Requirements & Comments: 1 19 10 830\[Company:	Skin Irritant Poison B Unknown Return to Client Disposal (A fee may be assessed if samples are retained longer than I month) Return to Client Disposal By Lab Archive For Months	It 19/10 10-10 X 2 2 Y G X X XX X X X X X X X	II 19 10 0925 X 2 3 2 Y G X X X X X				MS/DS 11/19/10 1335 M 4 6 4 9 6 X X X X X X X X X			11/15/16 13 13 2 16 18 18 18 18 18 18 18	11/8/10 0942 X 2 3 2 Y 6 X X X X X X X X X X X	Sample Martification Sample Date Sample Time 2 2 2 2 2 2 2 2 2	Martin Sample Date Sample Time 21 19 19 19 19 19 19 19

Relinquished by:

Company:

Company:

Date/Time:

Date/Time:	Company:		Received by:	117	Date/Time:	1 24.4	Company:	Relinquished by:	
Date/Time:	Company:		Received by:	M 7.700	Date/Time:	7 m V	Company: TO MA	Relipquisted by:	
				alaman - America				Special Instructions/QC Requirements & Comments:	
	1 menth) or Months	ples are retained longer than I month) y Lab Archive For	Sample Disposal (A fee may be assessed if samples are Disposal By Lab Disposal By Lab		Unknown	Poison B	Skin Irritant	Possible Hazard Identification Non-Hazard Flammable	
									
				W-F					
									1
					-	·			
									- '
									- 1
10		×		7	×	1230	11/19/10	TRIP BLANK	- 1
		6XXXX	1 V	2 3	7	1130	11/19/10	MW-S	
Sample Specific Notes / Special Instructions:		20 50 Dis	NaOH ZnAc/ NaOH Unpres Other:	H2SO4 HNO3 HCI	Air Aqueous Sediment Solid Other:	e Sample Time	Sample Date	Sample Identification	-:
		25 26 50L		C Systematics				PO#	-
		; VED	L O			eking No:	Shipping/Tracking No:	Project Number:	٦
		MET		і ІПП		ilpment/Carrier:	Method of Shipm	CHRIENIERS LAGOON	7
		#1.5	3 weeks				·	140 242 0750	3
	Analyses		al Tage		Sarah. wood) erm com	n. wood	Sarah	SOLON OH 44139	Ω
of Cocs			5+29 50h	200	0750	m 440 543 0750		30775 BANGUIGHT FOR STE 160	
١.		Telephone:	Africa Fredericy	AARON Telephone:	Wood		SPEAH SPEAH	Frw	: 3
COC No:	, and the second	Lab Contact:		Site Contact:		t Manager:	Client Project Manager:	Company Name:	3
est America I sharstaries. Inc.	-	31	RCRA Other		□ DW	Regulatory program:	Regulatory program:		İ
THE LEADER IN ENVIRONMENTAL TESTING	THELE			DATH (2	ratory location.		4	
estAmerica	le le		v Record	Chain of Custody Record	Chai	•			•

TAL-0018 (1008)

11/20/10

926

TestAmerica Cooler Receipt Form/Narrative Lot Numbe	r: AOK 220421								
North Canton Facility									
Client FRM Project Griener's By:	Clark								
Cooler Received on 11/20/10 Opened on 1/-22-/6	(Signature)								
FedEx ☐ UPS [② DHL ☐ FAS ☐ Stetson ☐ Client Drop Off ☐ TestAmerica Courie									
TestAmerica Cooler # Multiple Coolers ☑ Foam Box ☐ Client Cooler	☐ Other								
1. Were custody seals on the outside of the cooler(s)? Yes 🛮 No 🔲 Intact? Yes	No □ NA □								
If YES, Quantity 2 Quantity Unsalvageable 2									
Were custody seals on the outside of cooler(s) signed and dated? Yes	☑ No □ NA □								
Were custody seals on the bottle(s)?	□ No □								
If YES, are there any exceptions?	-								
2. Shippers' packing slip attached to the cooler(s)?	☑ No □								
	ned by client? Yes 🛮 No 🗌								
4. Were the custody papers signed in the appropriate place? Yes □ No □									
5. Packing material used: Bubble Wrap 🔼 Foam 🔼 None 🗌 Other	<i>y</i> –								
6. Cooler temperature upon receipt°C See back of form for multiple coo	lers/temps								
METHOD: IR ☑ Other □	. —								
COOLANT: Wet Ice D Blue Ice Dry Ice Water None									
7. Did all bottles arrive in good condition (Unbroken)?	☑ No □								
8. Could all bottle labels be reconciled with the COC? Yes	··················								
9. Were sample(s) at the correct pH upon receipt?	□ No □ NA □								
10. Were correct bottle(s) used for the test(s) indicated?									
11. Were air bubbles >6 mm in any VOA vials?									
12. Sufficient quantity received to perform indicated analyses? Yes	=/ :								
·	_ _								
13. Was a trip blank present in the cooler(s)? Yes \(\bigcap \) No \(\bigcap \) Were VOAs on the COC? Yes \(\bigcap \) No \(\bigcap \) Contacted PM \(\bigcap \bigcap \bigcap \) Date \(\bigcap \langle \langle \langle \langle \langle \bigcap \langle \langle \bigcap \langle \langle \bigcap \langle \langle \bigcap \langle \langle \bigcap \langle \langle \bigcap \langle \langle \bigcap \langle \langle \bigcap \langle \langle \bigcap \langle \langle \bigcap \langle \langle \bigcap \langle \bigcap \langle \bigcap \langle \bigcap \langle \bigcap \langle \bigcap \langle \bigcap \bigcap \langle \bigcap \langle \bigcap \bigcap \langle \bigcap \bigcap \bigcap \langle \bigcap									
Concerning # / Le	2 10100 101011 - 011101 -								
14. CHAIN OF CUSTODY									
The following discrepancies occurred:									
15. SAMPLE CONDITION									
Sample(s) were received after the recommended	d holding time had expired.								
Sample(s) were rece	ived in a broken container.								
Sample(s) were received with bubble >6 m	m in diameter. (Notify PM)								
16. SAMPLE PRESERVATION									
Sample(s) Were further pre	eserved in Sample								
Receiving to meet recommended pH level(s). Autric Acid Lot# 051010-HNO3, Sulfuric Acid Lot#	051010-H ₂ SO ₄ ; Sodium								
Hydroxide Lot# 100108 -NaOH; Hydrochloric Acid Lot# 092006-HCl; Sodium Hydroxide and Zinc Ace	etate Lot# 100108-								
(CH ₃ COO) ₂ ZN/NaOH. What time was preservative added to sample(s)? <u>10:45</u> Am									
Client ID pH									
1 222	<u>Date</u> <u>Initials</u>								
1000 1212	Date Initials								
7 1.7.62									
7 /2/2 3 12/2/2 12/2/2									
7 1.7.62									
7 /2/2 3 12/2/2 12/2/2									
7 /2/2 3 12/2/2 12/2/2									

	ility <u>pH</u>	Date,	Initial
Client ID		11/22/10	CSL
2	1212	11/22/10	1
5		7	
<u> </u>			
			
			1
Cooler#	Temp. °C	Method	Coola
236	14.0	IR	we+i
4313	3, 3, €		i
499	3,2° C		
2461	2.800		<u></u>
			-

END OF REPORT

Appendix E Mann-Kendall Test Descriptions and Output

Nonparametric Statistical Tests for Determining the Effectiveness of Natural Attenuation

Two nonparametric statistical tests are described here: the Mann-Kendall (S) and Mann-Whitney (U) statistical tests. These tests can be used to show whether groundwater contaminant concentrations in a monitoring well are increasing, stable or decreasing. However, neither test is able to determine the rate in which the concentrations are changing over time. The Mann-Kendall Test can be used with a minimum of four (4) rounds of sampling results; however, the Mann-Kendall Test is not valid for data that exhibit seasonal behavior. The Mann-Whitney U Test is applicable to data that may or may not exhibit seasonal behavior, but the test requires eight (8) consecutive rounds of quarterly or semi-annual sampling results. To demonstrate that natural attenuation is effective, the chosen statistical test must show decreasing contaminant concentrations at an appropriate confidence level, given in the test methodologies that follow.

Mann-Kendall Test

- 1. Assemble well data for at least four (4) sampling events for each contaminant in the order in which the data was collected. Include all contaminants that have exceeded the ES at one or more monitoring wells. Include data from:
 - a. One or more contaminated monitoring wells near the downgradient plume margin, which may include piezometers,
 - b. A monitoring well near the source zone, and
 - c. At least one monitoring well along a flow line between the source zone well and plume margin well.
- 2. For purposes of the Mann-Kendall test, all non-detect data values should be assigned a single value that is less than the detection limit, even if the detection limit varies over time.
- 3. Tests for Seasonality in Data. For seasonally affected data, either remove the seasonality in the data (e.g., by only testing data from the seasons with the highest contaminant concentrations) or use a statistical test that is unaffected by seasonality, such as the Mann-Whitney U Test. To test for data seasonality:
 - a. Determine if groundwater flow direction changes with season by comparing a water table map from each season that the contaminant concentrations are measured. If the flow direction changes from one sampling period to another and shifts the plume away from the wells being used in the statistical test, then data from those season(s) that are shifted away from the centerline monitoring wells can not be used in the Mann-Kendall Test.

- <u>b.</u> Determine if groundwater elevation and contaminant concentration change seasonally. Plot contaminant concentration versus groundwater level for each well to be assessed by the Mann-Kendall Test. If groundwater concentrations change as water level changes, then the data is seasonally affected. The seasons with the highest contaminant concentrations should be included in the Mann-Kendall Test.
- 4. Calculate the Mann-Kendall Statistic (S) using a manual method or a DNR supplied spreadsheet. Assess all contaminants in the plume for the selected wells being assessed with the Mann-Kendall Test. Enter data for each contaminant in the order it was collected.
 - a. Manual Method to Calculate Mann-Kendall Statistic. Compare data sequentially, comparing sampling event 1 to sampling events 2 through n, then sampling event 2 to sampling events 3 through n, etc. Each row is filled in with a 1, 0 or -1, as follows:

Along row 2, if:

- Concentration of event $x_i > \text{event } 1$: Enter +1
- Concentration of event x_i = event 1: Enter 0
- Concentration of event x_i < event 1: Enter 1

Where:

n = total number of sampling events

 x_i = value of given sample event, with i = 2 to n

Continue for the remaining rows. Sum each row and enter result at the end of the row. Add the sum of each row down to obtain the Mann-Kendall Statistic (S). See Table A as an example.

Table A
Mann-Kendall Statistic

	Sampling	Sampling	Sampling	Sampling	Sampling	
	Event 1	Event 2	Event 3	Event 4	Event 5	
Contaminant					•	Sum Rows
concentration >	100	50	85	75	50	
Compare to Event 1	>	-1	-1	-1	-1	- 4
Compare to Event 2		. 3	+1	+1	0	. + 2
Compare to Event 3			•	-1	-1	- 2
Compare to Event 4				> .	-1	- 1
			Mann Kend	dall Statistic	(Total) =	- 5

b. Manual Mann-Kendall Statistic Look up Table. Table B gives the maximum S statistic (S_{max}) to accept a declining trend alternative at an α level of significance. If the

computed S is greater than S_{max} (or S is a smaller negative number than S_{max}), then there is either a no-trend or an increasing trend in the data.

Table B
Mann-Kendall Statistic Look Up Table

N	Dance of C	S_{max} $\alpha = 0.2*$	
IN	Range of S	0. – 0.2 ··	
4	- 6 to + 6	- 4	
-5	-10 to + 10	- 5	
6	-15 to + 15	- 6	
7	-21 to +21	- 7	
8	-28 to +28	- 8	
9	-36 to + 36	-10	
10	- 45 to +45	-11	

^{*} The probability that the computed Mann-Kendall statistic $S \leq S_{max}$ is at most σ .

- 5. Test for a declining trend. Evaluate data trends for each contaminant identified in the plume. Evaluate the null hypothesis of no trend against the alternative of a decreasing trend. The null hypothesis can be rejected in favor of a decreasing trend if both of the following conditions are met:
 - a. S is a large negative number (see Table B for magnitude of S)
 - b. The probability value, given n (number of data) and the absolute value of S, is LESS than the a priori significance level, α_2 , of the test. An $\alpha_2 \le 0.2$ is acceptable.
- 6. Test for an increasing trend. An increasing trend alternative (i.e., an advancing plume) is shown if both of the following conditions are met:
 - a. S is positive.
 - b. $S \ge |S_{max}|$ at a given α level of significance (see Table B). If the computed S is equal to or greater than the absolute value of S_{max} , then it can be concluded the plume is advancing at an α level of significance. An $\alpha \le 0.2$ is acceptable for this test.
- 7. Test for Plume Stability. If the Mann-Kendall Test indicates no-trend is present, perform the coefficient of variation test. As a non-parametric test, the Mann-Kendall Test does not take into account the magnitude of scatter in the data. A data set with a great deal of scatter may return a Mann-Kendall test indicating there is no trend, when, in fact, no conclusion can be drawn regarding trend because of data variability. In this case, additional data collection may be necessary to determine that the plume is stable, declining or advancing. As a simple test, the coefficient of variation can assess the scatter in the data:

$CV = \frac{\text{standard deviation}}{\text{arithmetic mean}}$

Where: CV = coefficient of variation

CV should be ≤ 1 to say that the no-trend hypothesis also indicates a stable plume configuration.

Mann-Whitney U Test. This test is equivalent to the Wilcoxon Rank Sum Test.

- 1. Assemble well data for the most recent eight (8) consecutive quarterly or semi-annual sampling events for each contaminant that has exceeded the ES at one or more monitoring wells. Include data from:
 - a. One or more contaminated monitoring wells near the downgradient plume margin, which may include piezometers,
 - b. A monitoring well near the source zone, and
 - c. At least one monitoring well along a flow line between the source zone well and plume margin well.
- 2. Enter the data into a DNR supplied spreadsheet or manually assemble the data into a table (e.g., Table C) in the order the data was collected. Assign a rank to each sample value, with the smallest value ranked #1 and the largest value ranked #8.
- 3. For purposes of the Mann-Whitney U test, all non-detect values should be assigned a data value of zero (0).

Table C
Example Data Set for the Mann-Whitney U Statistical Test

Year/Date	Benzene Concentration (ug/l)	Rank	Rank Sum of 1 st Year (Wrs)
1 st Year, 1 st Quarter	160	8)	
1 st Year, 2 nd Quarter	130	7	25
1 st Year, 3 rd Quarter	.80	4	25 .
1 st Year, 4 th Quarter	100	6	•
2 nd Year, 1 st Quarter	89 ·	5	,
2 nd Year, 2 nd Quarter	0	1	
2 nd Year, 3 rd Quarter	53	3	
2 nd Year, 4 th Quarter	24	2	
		U = 26 -	-Wrs = 1

- 4. Sum the ranks for the data in the 1st year. Denote this sum as Wrs (or the Wilcoxon rank sum).
- 5. Calculate the U Statistic. U = 26 Wrs
- 6. Interpreting U Statistic. For 2 groups of 4 samples, at $U \le 3$, the probability that year 2 data show a decrease relative to year 1 data is at least 90%, and so $U \le 3$ will be acceptable to show that contaminant concentration is declining.
- 7. If there are ties in sample data, calculate an average rank value for the tied data and assign this average rank to the tied sample data. See example in Table D.

Table D

Example of Rank Sum Value for Tied Data

Year/Date	Benzene Concentration (ug/l)	Check for Ties	Rank	Rank Sum of 1 st Year (Wrs)
1 st Year, 1 st Quarter	300		8)	
1 st Year, 2 nd Quarter	280		7 }	24.5
1 st Year, 3 rd Quarter	105		4	24.3
1 st Year, 4 th Quarter	110	*	5.5	
2 nd Year, 1 st Quarter	83		3	
2 nd Year, 2 nd Quarter	50 ·	√ √	1.5	
2 nd Year, 3 rd Quarter	110	*	5.5	
2 nd Year, 4 th Quarter	50	\checkmark	1.5	
			U = 26 -	$-\mathbf{Wrs} = 1.5$

8. Probability and the U Statistic. Table E shows the a value and the confidence level for values of U calculated for 2 groups of 4 samples each.

Table E Probability and U Statistic(For 2 Groups of 4 samples each)

U Statistic Level of Confidence Level (%) significance (a) 0 0.014 98.6 1 0.029 97.1 2 94.3 0.057 3 0.100 90.0

9. If more than 8 consecutive rounds of data are available, a Mann-Whitney U statistic can be calculated similar to the method presented here. Each set of data to be compared should represent the same span of time (e.g. 1 year) and the same time interval between samples (e.g., quarterly). The test must be conducted at a level of significance (a) of ≤ 0.10 .

References:

Conover, W.J., Practical Nonparametric Statistics, 2nd Ed., John Wiley & Sons, 1971, pp. 216 223.

Gilbert, R.O., Statistical Methods for Environmental Pollution Monitoring, Van Nostrand Reinhold, 1987, pp. 204 - 240 and 272.

Mann-Kendall Statistical Test

ite Name	Greiners Lagoon				V	Vell Number	MW-5
	Compound ->	Benzene	Antimony	Arsenic			
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentratio
Event Number							
1	Nov-98	63	30.0	18.0		E FALLS	STATE OF THE PARTY
2	Nov-06	30	30.0	30.3			ALC: NO STATE OF
3	Nov-07	22	110.0	83.3			
4	Nov-08	11	91.4	33.5			
5	Nov-09	13	155.0	15.1			May May Lie
6	Nov-10	13	104.0	11.0			
7							
8					A STATE OF		
9							
10							
	Mann Kendall Statistic (S) =	-10.0	8.0	-5.0	0.0	0.0	0.0
	Number of Rounds (n) =	-10.0	6.0	-5.0	0.0	0.0	0.
	Average =	25.33	86.73	31.87	#DIV/0!	#DIV/0!	#DIV/0
	Standard Deviation =	19.806	48.906	26.681	#DIV/0!	#DIV/0!	#DIV/0
	Coefficient of Variation(CV)=	0.782	0.564	0.837	#DIV/0!	#DIV/0!	#DIV/0
rror Check Bla	ank if No Errors Detected				n<4	n<4	n<4
TO OTICON, DIE	ank ii ivo Eiroro Detected						
rend ≥ 80% C	onfidence Level	DECREASING	INCREASING	No Trend	n<4	n<4	n<
	onfidence Level	DECREASING	INCREASING	No Trend	n<4	n<4	n<
tability Test. If	No Trend Exists at			CV <= 1	n<4	n<4	n<
80% Confidence		NA	NA	STABLE	n<4	n<4	n<
	Data Entry By =	AK	Date =	14-Feb-11			

ite Name	Greiners Lagoon					Well Number	MW-6
Г	Compound ->	Benzene	Arsenic				
	Compound	Concentration	Concentration	Concentration	Concentration	Concentration	Concentratio
Event Number	Sampling Date (most recent last)	Concentration	Concentiation	Concentration	Concentration	Concentration	Concentiatio
1	Nov-98	18.0	66.0				
2	Nov-06	1.5	24.0				
3	Nov-07	1.6	45.9				
4	Nov-08	10.0	16.9				
5	Nov-09	10.0	130.0				
6	Nov-10	10.0	30.7				
7	25 10 10 10 10 10 10 10 10 10 10 10 10 10	10.0	00.1		N WE STATE		Z TO THE VI
8	AT THE REPORT OF THE PARTY OF T					THE RESIDENCE	
9							
10		CAR MONEY			Maria Control	Carolina Sa	
1.44		Mary Mary		1	Last a Wa	100	
3 70 1	Mann Kendall Statistic (S) =	2.0	-1.0	0.0	0.0	0.0	0.0
	Number of Rounds (n) =	6	6	0	0	0	
	Average =	8.52	52.25	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0
Charles I	Standard Deviation =	6.223	41.920	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0
	Coefficient of Variation(CV)=	0.731	0.802	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0
ror Check Blank	k if No Errors Detected			n<4	n<4	n<4	n<
ror oricon, Diam	N II I I I I I I I I I I I I I I I I I						
end ≥ 80% Con	ifidence Level	No Trend	No Trend	n<4	n<4	n<4	n<
	end ≥ 90% Confidence Level		No Trend	n<4	n<4	n<4	n<
ability Test If No	o Trend Exists at	CV <= 1	CV <= 1	n<4	n<4	n<4	n<
80% Confidence		STABLE	STABLE	n<4	n<4	n<4	n<
	Data Fata D	AIK	Dete	44 5-5-44	Call Car		
	Data Entry By =	AK	Date =	14-Feb-11	Land Barrier		1.0

Mann	-Kendall	Statistical	Toet
INIGILLI	"IXCIIUali	Julianica	ICSL

ite Name	Greiners Lagoon					Well Number	MW-7
Г	Compound ->	Benzene	Arsenic				
_		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date				Hallon Hall		
Number	(most recent last)						
1	Nov-98	23.0	86.0			REPORT OF THE SE	
2	Nov-06	13.0	88.5			TANK EVEL AND I	
3	Nov-07	9.2	246.0				
4	Nov-08	5.7	192.0				
5	Nov-09	2.9	264.0				
6	Nov-10	1.9	75.7				
7							
8				The state of the s			
9		1952 N		EX TOTAL EN	The state of		
10							
Г	Mann Kendall Statistic (S) =	-15.0	3.0	0.0	0.0	0.0	0.0
	Number of Rounds (n) =	6	6	0.0	0.0	0.0	
C 10 10 10 10 10 10 10 10 10 10 10 10 10	Average =	9.28	158.70	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0
	Standard Deviation =	7.875	85.931	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0
100	Coefficient of Variation(CV)=	0.848	0.541	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0
rror Check, Blan	k if No Errors Detected			n<4	n<4	n<4	n<4
rend ≥ 80% Con		DECREASING	No Trend	n<4	n<4	n<4	n<4
rend ≥ 90% Con	fidence Level	DECREASING	No Trend	n<4	n<4	n<4	n<4
tability Test, If N	o Trend Exists at		CV <= 1	n<4	n<4	n<4	n<4
80% Confidence		NA	STABLE	n<4	n<4	n<4	
	Data Entry By =	AK	Date =	14-Feb-11			1

e Name G	Greiners Lagoon					Well Number	MW-8
Г	Compound ->	Arsenic					
	Compound	Concentration	Concentration	Concentration	Concentration	Concentration	Concentratio
Event	Sampling Date						
Number	(most recent last)		Sent Transfer		The state of the s	A 100 A 11 A 11 A	
1	Nov-98	39.0			To gray		THE STATE OF THE S
2	Nov-06	5.0					
3	Nov-07	5.0	A CONTRACTOR OF THE PARTY OF TH	New Manager			
4	Nov-08	5.0				March March	Service Transfer of the
5	Nov-09	39.0		THE PROPERTY.	S CONTRACTOR		
6	Nov-10	4.0			22.20	Con-Asire and	
7						ALEM STATE OF	
8		The second	SERVICE SERVICES	2 8 7 8	7.2		
9		BALL TO BE WITH THE		NA STATE OF THE STATE OF	A THEOLOGICAL		Carlo to top 151
10							
	Mann Kendall Statistic (S) =	-5.0	0.0	0.0	0.0	0.0	0.0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Number of Rounds (n) =	-5.0	0.0	0.0	0.0	0.0	
		16.17	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0
	Average = Standard Deviation =	17.691	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0
	Coefficient of Variation(CV)=	1.094	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0
r Check Blank	c if No Errors Detected		n<4	n<4	n<4	n<4	n<
Oricok, Diarri	THO EHOIS Betested						
nd ≥ 80% Con	fidence Level	No Trend	n<4	n<4	n<4	n<4	n<
nd ≥ 90% Con		No Trend	n<4	n<4	n<4	n<4	n<
pility Test. If No	Trend Exists at	CV > 1	n<4	n<4	n<4	n<4	n<
% Confidence		NON-STABLE	n<4	n<4	n<4	n<4	n<
	Data Entry By =	AK	Date =	14-Feb-11			1

ite Name G	Greiners Lagoon					Well Number	MW-9
Г	Company	Amenial		65000			
	Compound ->	Arsenic	Canadastica	Commenter	0	0	0
Frant	Campling Data	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date						
Number	(most recent last)	10.0					
1	Nov-98	16.0					
2	Nov-06	19.5		THE PARTY OF THE PARTY OF	SCHOOL STATE OF	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
3	Nov-07	19.5					
4	Nov-08	19.8					
5	Nov-09	28.6					
6	Nov-10	31.1					100 CT 10
7				100			
8							
9							
10							
	Mann Kendall Statistic (S) =	14.0	0.0	0.0	0.0	0.0	0.
	Number of Rounds (n) =	6	0.0	0	0	0.0	
	Average =	22.42	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0
	Standard Deviation =	5.978	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0
	Coefficient of Variation(CV)=	0.267	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0
Frror Check, Blank	k if No Errors Detected		n<4	n<4	n<4	n<4	n<
rend ≥ 80% Con	fidence Level	INCREASING	n<4	n<4	n<4	n<4	n<
rend ≥ 90% Con		INCREASING	n<4	n<4	n<4	n<4	n<
N-1 77 - 1 16 11	Total Falls						
	ability Test, If No Trend Exists at		n<4	n<4	n<4	n<4	n<
80% Confidence	Level	NA	n<4	n<4	n<4	n<4	n<
	Data Entry By =	AK	Date =	14-Feb-11	200		
	2000 2000 39					THE RESERVE TO SERVE THE PARTY OF THE PARTY	

e Name G	Greiners Lagoon				V	Vell Number	MW-11
	Compound ->	Arsenic					
	Compound ->	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	Concentiation	Concentration	Concentiation	Concentration	Concentration	Concentiati
Number	(most recent last)	-					
1	Nov-98	11.0	NAME OF THE OWNER, WHEN	SCHOOL TON			
2	Nov-06	5.0	THE RESERVE OF THE PERSON NAMED IN	DIE STEELS	Marchael Wolf	THE REAL PROPERTY.	PILS DAY
3	Nov-07	5.0		CONTRACTOR OF THE PARTY OF THE			NO VIOLEN
4	Nov-08	5.0	3 2 3 3 3 4 3	7350 9 9 11 1	E Hym Yey	SERVICE SERVICE	
5	Nov-09	5.0		NEW OF BUILDING		SEE SEE SEE	THE STATE OF THE S
6	Nov-10	10.7	THE RUNGER			W. Balance	+2 740
7		W. T. T. Carlotte		160 114116 7	Sec. I Sec. N	Carlotte Carlo	73 100
8		THE THE PARTY OF	The Bally				A STANDARD
9	AND ENGINEERS OF		THE STATE OF		TO WALKE		
10		Maria Library H					
The state of the s				N. C. L. T. S.			
	Mann Kendall Statistic (S) =	-1.0	0.0	0.0	0.0	0.0	
	Number of Rounds (n) =	6	0	0	0	0	The same of the same
No.	Average =	6.95	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV
	Standard Deviation =	3.022	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV
	Coefficient of Variation(CV)=	0.435	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV
or Check, Blank	k if No Errors Detected		n<4	n<4	n<4	n<4	n
nd ≥ 80% Conf	fidence Level	No Trend	n<4	n<4	n<4	n<4	n
nd ≥ 90% Conf		No Trend	n<4	n<4	n<4	n<4	n
bility Test, If No	Trend Exists at	CV <= 1	n<4	n<4	n<4	n<4	r
% Confidence	Level	STABLE	n<4	n<4	n<4	n<4	r
	Data Entry By =	AK	Date =	14-Feb-11	The state of the s		

Mann-Kendall	Statistical	Test

Site Name (Greiners Lagoon			K. K. N.		Well Number	MW-13
Γ	Compound ->	Arsenic					
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentratio
Event Number	Sampling Date (most recent last)						
1	Nov-98	39.0					C. W. Lorrey B. V.
2	Nov-06	5.0	PERMIT PERMIT				2740万里克地名
3	Nov-07	5.0	AND STREET				SALES BEEN A
4	Nov-08	5.0	No. of Contract of				
5	Nov-09	22.1					C. C. Carrier - Const.
6	Nov-10	23.4				91001	
7							
8							
9		And policy and the					Service of the service of
10		Cald Sale					37.5
_							
	Mann Kendall Statistic (S) =	2.0	0.0	0.0	0.0		
	Number of Rounds (n) =	6	0	0	0	0	
	Average =	16.58	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0
	Standard Deviation =	14.014	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0
L	Coefficient of Variation(CV)=	0.845	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0
Frror Check, Blan	k if No Errors Detected		n<4	n<4	n<4	n<4	n<
Trend ≥ 80% Cor		No Trend	n<4	n<4	n<4	n<4	n<
rend ≥ 90% Cor	nfidence Level	No Trend	n<4	n<4	n<4	n<4	n<
Stability Test, If N	o Trend Exists at	CV <= 1	n<4	n<4	n<4	n<4	n<
	30% Confidence Level		n<4	n<4	n<4	n<4	n<
		All				A Charles M.	
	Data Entry By =	AK	Date =	14-Feb-11			

Appendix F Risk Assessment Calculation Tables

Estimated Cancer and Non-Cancer Risks Associated with Dermal Exposure with On-site Perched Ground Water On-Site Construction/Utility Worker

Parameter	Parameter Definition	Values for		Rationale/	I	ntake Equation/
Code		Adult Exposure	Units	Reference		Model Name
DA	Absorbed dose per event	chemical-specific	mg/cm²-event	USEPA 2004	Where Dermal Ab	sorbed Dose per Event (DA _{event}) =
SA	Skin Surface Area Available for Contact	`		-		•
		3,300	cm²	USEPA 2002 – Recommended value	Inorganics -	DAevent (mg/cm CW x CF x tevent x Kp
	· .			for construction worker (Exhibit 1-2).	· event) -	CW XCF X levent X Kp
FA	Fraction Absorbed	1	unitless	USEPA 2004		
ÈL	Exposure Time	1.0	hrs/day	USEPA 2004		•
	•					Organics -
EV .	Event Frequency	1	events/day .	USEPA 2004		
				·	USEPA RAGS Part E: Equation 3.2/3.3 (2004)	
EF	Exposure Frequency	20	days/yr	Professional judgment	Calc'd using USEPA Part E spreadsheet	
ED	Exposure Duration	1	уг	EPA 1991	4	
CF	Conversion Factor	0.001	L/cm³	· –		
BW	Body Weight	70	kg	EPA 1991		•
AT-C	Averaging Time (Cancer)	25,550	days	USEPA 1989		
AT-N	Averaging Time (Non-Cancer)	365	days	USEPA 1989 .		· •
IF-C	Intake Factor (Cancer)	3.7E-02	event-cm²/kg-day	calculated	IF = SA x EV	x EF x ED x 1/BW x 1/AT-C
IF-NC	Intake Factor (Non-cancer)	2.6E+00	event-cm²/kg-day	calculated	IF = SA x EV	x EF x ED x 1/BW x 1/AT-N
	. Maximum				· On	-Site Groundwater
·	On-Site Groundwater	Toxicity	Values	_	Estimated	f Dermal Exposure Risks
	Concentration	Dermal Cancer Slope Factor	Dermal Reference Dose	DAevent	Cancinogenic Risk	Noncancinogenic Risk
nstituent	(mg/L)	(mg/kg-day)-1	(mg/kg-day)	(mg/cm2-event)	•	•
tone	0.23	NA NA	9.0E-01	5.31E-07	NA	1.5E-06
zene	0.013	5.5E-02	4.0E-03	8.45E-07	1.7E-09	5.5E-04
ethyl-2-pentanone	0.34	NA	-8.0E-02	4.28E-06	NA	1.30E-05
thyl ethyl ketone	0.042	NA	6.0E-01	1.85E-07	NA	2.4E-07

	·				Off-Site Groundwater		
•	On-Site Groundwater	Toxicity	Values		Estimated D	ermal Exposure Risks	
	Concentration	Dermal Cancer Slope Factor	Dermal Reference Dose	DAevent	Cancinogenic Risk	Noncancinogenic Risk	
Constituent	(mg/L)	(mg/kg-day)-1	(mg/kg-day)	(mg/cm2-event)		<u> </u>	
acetone	0.23	NA NA	9.0E-01	5.31E-07	NA NA	1.5E-06	
benzene	0.013	5.5E-02	4.0E-03	8.45E-07	1.7E-09	5.5E-04	
4-methyl-2-pentanone	0.34	NA NA	-8.0E-02	4.28E-06	NA NA	1.30E-05	
methyl ethyl ketone	0.042	NA	6.0E-01	1.85E-07	NA	2.4E-07	
ethylbenzene	0.0024	1.1E-02	1.0E-01	5.03E-07	2.0E-10	1.3E-05	
ethylmethacrylate '	0.00023	NA NA	9.0E-02	NC	NA NA	NA ·	
isobutyl alcohol	0.011	NA	3.0E-01	NC	NA NA	NA	
richloroethene	0.002	5.9E-03	NA	1.15E-07	2.5E-11	NA	
toluene	0.007	NA NA	8.0E-02	9.34E-07	NA NA	3.0E-05	
kylene	0.0052	NA	2.0E-01	1.09E-06	NA NA	1.4E-05	
intimony	0.104	NA NA	6.0E-05	3.60E-08	NA NA	· 1.8E-03	
ırsenic	0.0757	1.5E+00	3.0E-04	3.03E-07	1.7E-08	2.6E-03	
nickel	0.14	. NA	8.0E-04	· 1.12E-07	NA NA	3.3E-04	
selenium	0.0094	NA NA	5.0E-03	3.76E-08	NA NA	1.9E-05	

NA - Not Available

NC - Not Calculated

Estimated Cancer and Non-Cancer Risks Associated with Dermal Exposure with Off-site Perched Ground Water Off-Site Construction/Utility Worker

Parameter	Parameter Definition	Values for		Rationale/	Intake Equation/
Code		Adult Exposure	Units	Reference	Model Name
DA _{event}	Absorbed dose per event	chemical-specific	mg/cm²-event	USEPA 2004 ·	Where Dermal Absorbed Dose per Event (DA _{event}) =
SA .	Skin Surface Area Available for Contact				
		3,300	cm ²	USEPA 2002 – Recommended value	Inorganics - DAeve
٠				for construction worker (Exhibit 1-2).	(mg/cm2-event) = CW x CF x tevent x Kp
FA	Fraction Absorbed	1	unitless	USEPA 2004	•
ET	Exposure Time	1.0	hrs/day	USEPA 2004	. •
			·		Organics -
EV	Event Frequency	1	events/day	USEPA 2004	·
-		•	,		USEPA RAGS Part E: Equation 3.2/3.3 (2004)
EF	Exposure Frequency	. 20	days/yr	Professional judgment	Calc'd using USEPA Part E spreadsheet
ED	Exposure Duration	1	yr	EPA 1991	
CF	Conversion Factor	0.001	· L/cm³	· -	
BW	Body Weight	70	kg .	EPA 1991	
AT-C	Averaging Time (Cancer)	25,550	days	USEPA 1989	
AT-N	Averaging Time (Non-Cancer)	365	days	USEPA 1989	
IF-C	Intake Factor (Cancer)	3.7E-02	event-cm ² /kg-day	calculated	IF = SA x EV x EF x ED x 1/BW x 1/AT-C
IF-NC	Intake Factor (Non-cancer)	2.6E+00	event-cm ² /kg-day	calculated	$IF = SA \times EV \times EF \times ED \times 1/BW \times 1/AT-N$
	Maximum				On-Site Groundwater
	Off Site Croundwater	T1-1	Value		Ferimeted Dermal Exposure Picks

	Maximum Off-Site Groundwater	Toxicity	Values			Groundwater mal Exposure Risks	
	Concentration	Dermal Cancer Slope Factor	Dermal Reference Dose	DAevent	Cancinogenic Risk	Noncancinogenic Risk	
Constituent	(mg/L)	(mg/kg-day)-1	(mg/kg-day)	(mg/cm2-event)			
acetone .	0.028	NA ·	9.0E-01	6.47E-08	· NA	1.9E-07	
4-methyl-2-pentanone	0.0022	NA	8.0E-02	2.77E-08	NA	8.95E-08	
methyl ethyl ketone	0.00057	NA	6.0E-01	2.51E-09	NA	3.2E-09	
arsenic	0.0311	1.5E+00	3.0E-04	1.24E-07	6.9E-09	1.1E-03	
nickel	0.0053	NA	8.0E-04	4.24E-09	NA	1.4E-05	
	0.0053	NA	8.0E-04		NA		

NA - Not Available

NC - Not Calculated

Estimated VOC Concentrations in Trench Air migrating from On-site Perched Ground Water On-Site Construction/Utility Worker

Groundwa Concentral mg/cm² mg/cm²	ion MW 3 g/mole 58.08	K _{iL} cm/sec	K _{IG} cm/sec	Law Constant	Temperature.	Constant * atm-m3/mole	. Ki	Area	Rate	Concentration
acetone 0.00023 benzene 0.00001 4-methyl-2-pentanone 0.00034	58.08		cm/sec			alm m3/mala				
benzene 0.00001: 4-methyl-2-pentanone 0.00034	1	0.004507945				atti-no/mole	cm/sec	cm2	mg/sec	mg/m3
ethylbenzene 0.000002 ethylmethacrylate 0.000000 isobutyl alcohol 0.00001 trichloroethene 0.00000 toluene 0.000000 xylene 0.000005	100.16 72.11 4 106.17 100 74.12 131.39 7 92.14	0.003904375 0.003447924 0.004063564 0.003348913 0.003448613 0.004008087 0.00359485 0.00359485	0.56261639 0.50945352 0.46873642 0.52327839 0.45967479 0.46879914 0.5184811 0.42799916 0.48202675 0.45967479	0.000082 0.000082 0.000082 0.000082 0.000082 0.000082 0.000082 0.000082	298 298 298 298 298 298 298 298 298 298	0.000035 0.00555 0.000138 0.0000569 0.00788 0.000319 0.0000978 0.00985 0.00664 0.00518	0.00068409 0.00377693 0.00149747 0.00093739 0.00327493 0.00220569 0.0001973 0.00295877 0.00349882 0.00323764	9.29E+04 9.29E+04 9.29E+04 9.29E+04 9.29E+04 9.29E+04 9.29E+04 9.29E+04 9.29E+04 9.29E+04	0.014617457 0.004561545 0.047300464 0.003657631 0.000730201 4.71306E-05 0.000201624 0.000549757 0.002275358 0.001564091	1.35E-03 4.22E-04 4.38E-03 3.39E-04 6.76E-05 4.36E-06 1.87E-05 5.09E-05 2.11E-04 1.45E-04

* = Regional Screening Level (RSL	chemical-specific parameters supporting	ng table (USEPA, November 2016	0).
-----------------------------------	---	--------------------------------	-----

 $C_a = E_i / LS \times V \times MH$; where C_a is the Ambient Air Concentration (mg/m³)

 $K_{IG} = (MW_{H2O}/MW_1)^0.335 \times (T/298)^1.005 \times (k_{IG}, O_2)$; where KiG is the Gas Phase Mass Transfer Coefficient (cm/second)

 $\dot{K}_{L} = (MW_{O2}/MW_{i})^{0.5} \times (T/298) \times (k_{L}/O_{2})$; where K_{L} is the Liquid Phase Mass Transfer Coefficient (cm/second)

 $K_i^{-1} = K_{RL}^{-1} + ((R \times T)/(H_i \times K_{iG}))$; where K_i is the Overall Mass Transfer Coefficient (cm/second)

 $E_i = K_i \times C_i \times A$; where E_i is the Emission Rate (mg/second)

	Input Variables:	Value	Units	X	
	Contaminant Liquid Phase Concentration, C. =	Chem Specific	mg/cm³		
	Area, A =	9.29E+04	cm²	$=L \times W = 20 \text{ ft} \times 5 \text{ ft} = 100 \text{ ft}^2 = 92,903 \text{ cm}^2$	
m/second)	ldeal Gas Law Constant, R =	8.20E-05	atm-m3/mole-degK		
i) .	Temperature, T =	298	degK		
	Henry's Law Constant for Compound I, H, =	Chem Specific	atm-m³/mole		
	Molecular Weight of Oxygen , MW ₀₂ =	32	g/mole	-	
	Molecular Weight of Water, MW _{H20} =	18	g/mole		
	Molecular Weight of Compound i, MW _i =	Chem Specific	g/mole	\$	
Liquid Phase Mass T	ransfer Coefficient for Oxygen at 25 degC, $k_U O_2 =$	0.0061	cm/second	•	
Gas Phase Mass Transfe	r Coefficient for Water Vapor at 25 degC, k_{IG} , O_2 =	0.833	cm/second		
	Length of side perpendicular to the wind, LS =	2.4	meters	= 8 feet	
	Average wind speed, V =	2.25	m/second	•	
	Mixing Height before being inhaled, MH =	2	meters	•	

$\label{lem:construction} \textbf{Estimated VOC Concentrations in Trench Air migrating from Off-site Perched Ground Water On-Site Construction/Utility Worker$

	Maximum On-Site				Ideal Gas		Henry's Law			Emission	Air
2000000	Groundwater Concentration mg/cm^3	MW g/mole	K _{iL} cm/sec	K _{iG} cm/sec	Law Constant	Temperature	Constant * atm-m3/mole	Ki cm/sec	Area cm2	Rate mg/sec	Concentration mg/m3
acetone 4-methyl-2-pentanone methyl ethyl ketone	0.000028 0.0000022 0.0000057	58.08 100.16 72.11	0.004527845 0.003447924 0.004063564	0.56261639 0.46873642 0.52327839	0.000082 0.000082 0.000082	298 298 298	0.000035 0.000138 0.0000569	0.00068409 0.00149747 0.00093739	9.29E+04 9.29E+04 9.29E+04	0.001779517 0.000306062 4.96393E-05	1.65E-04 2.83E-05 4.60E-06

* = Regional Screening Level (RSL) chemical-specific parameters supporting table (USEPA, November 2010).	Input Variables:	Value	Units	
	Contaminant Liquid Phase Concentration, C, =	Chem Specific	mg/cm³	
$C_a = E_t / LS \times V \times MH$; where C_a is the Ambient Air Concentration (mg/m ³)	, Area, A =	9.29E+04	cm ²	=L x W = 20 ft x 5 ft = 100 ft ² = 92,903 cm ²
$K_{IG} = (MW_{H2O}/MW_0)^0.335 \times (T/298)^1.005 \times (k_{IG}, O_2)$; where KiG is the Gas Phase Mass Transfer Coefficient (cm/second)	Ideal Gas Law Constant, R =	8.20E-05	atm-m3/mole-degK	
$K_{IL} = (MW_{O2}/MW_{I})^{0.5} \times (\Gamma/298) \times (k_{I}, O_{2})$; where K_{IL} is the Liquid Phase Mass Transfer Coefficient (cm/second)	Temperature, T =	298	degK	
$K_i^{-1} = K_{iL}^{-1} + ((R \times T)/(H_i \times K_{iG}))$; where K_i is the Overall Mass Transfer Coefficient (cm/second)	Henry's Law Constant for Compound I, Hi =	Chem Specific	atm-m³/mole	-
E _i = K _i x C _i x A; where E _i is the Emission Rate (mg/second)	Molecular Weight of Oxygen , MW ₀₂ =	_ 32	g/mole	
	Molecular Weight of Water, MW _{H20} =	18	g/mole	
	Molecular Weight of Compound i, MW _i =	Chem Specific	g/mole	
Liquid Phase Mass T	ransfer Coefficient for Oxygen at 25 degC, k_L , $O_2 =$	0.0061	cm/second	
Gas Phase Mass Transfe	r Coefficient for Water Vapor at 25 degC, k_{IG} , $O_2 =$	0.833	cm/second	
•	Length of side perpendicular to the wind, LS =	2.4	meters	= 8 feet
	Average wind speed, $V =$	2,25	m/second	
	Mixing Height before being inhaled, MH =	2	meters	•

Estimated Cancer and Non-Cancer Risks Associated with Inhalation Exposure of VOCs in Trench Air migrating from On-site Perched Ground Water On-Site Construction/Utility Worker

Exposure Route	Parameter Code	Parameter Definition	Units	Values for Adult Exposure	Rationale/ Reference	Intake Equation/ Model Name
Inhalation	· CA	Chemical Concentration in Trench Air	mg/m³			Exposure Concentration (EC) (mg/m
					Modeled concentration in Trench Air	
	ЕТ	Exposure Time - Outdoor	. hr/day	1	Professional Judgment — assumes 1 hr of workday in trench	(CA x ET x EF x ED)/AT
	EF	Exposure Frequency - Outdoor	days/yr	20	Professional Judgment	
· :	ED	Exposure Duration	yr	1	Professional Judgment – assumes 1 year construction duration	
	AT _c	Averaging Time for Carcinogens	hours	613,200	USEPA 2009	
			L	· '		
	AT _{nc}	Averaging Time for Noncarcinogens	hours	8,760		's in Trench Air
	AT _{nc} Concentration in Trench	Toxicity Values	Inhalation	8,760	VOC Estimated In	halation Exposure Risks
	-	, , , ,		8,760	VOC	
onstituent	Concentration in Trench Air mg/m³	Toxicity Values	Inhalation Reference	8,760	VOC Estimated In	halation Exposure Risks
	Concentration in Trench	Toxicity Values Inhalation Unit Risk Factor	Inhalation Reference Concentration	8,760	VOC Estimated In	halation Exposure Risks
cetone	Concentration in Trench Air mg/m³	Toxicity Values Inhalation Unit Risk Factor (mg/kg-day)-1	Inhalation Reference Concentration (mg/kg-day)	8,760	VOC Estimated In Cancinogenic Risk	halation Exposure Risks Noncancinogenic Risk
cetone enzene -methyl-2-pentanone	Concentration in Trench Air mg/m³ 1.4E-03 4.2E-04 4.4E-03	Toxicity Values Inhalation Unit Risk Factor (mg/kg-day)-1 NA 5.5E-02 NA	Inhalation Reference Concentration (mg/kg-day) 3.1E+01 3.0E-02 3.0E+00	8,760	VOC Estimated In Cancinogenic Risk NA	halation Exposure Risks Noncancinogenic Risk 1.0E-07
cetone enzene -methyl-2-pentanone	Concentration in Trench Air mg/m³ 1.4E-03 4.2E-04 4.4E-03 3.4E-04	Toxicity Values Inhalation Unit Risk Factor (mg/kg-day)-1 NA 5.5E-02 NA NA NA	Inhalation Reference Concentration (mg/kg-day) 3.1E+01 3.0E-02 3.0E+00 5.0E+00	8,760	VCC Estimated In Cancinogenic Risk NA 7.6E-10	Noncancinogenic Risk 1.0E-07 3.2E-05
cetone enzene -methyl-2-pentanone vethyl ethyl ketone	Concentration in Trench Air mg/m³ 1.4E-03 4.2E-04 4.4E-03 3.4E-04 6.8E-05	Toxicity Values Inhalation Unit Risk Factor (mg/kg-day)-1 NA 5.5E-02 NA NA NA 2.5E-06	Inhalation Reference Concentration (mg/kg-day) 3.1E+01 3.0E-02 3.0E+00 5.0E+00 1.0E+00	8,760	VCC Estimated In Cancinogenic Risk NA 7.6E-10 NA	Noncancinogenic Risk 1.0E-07 3.2E-05 3.3E-06
cetone enzene -methyl-2-pentanone ethyl ethyl ketone thylbenzene	Concentration in Trench Air mg/m³ 1.4E-03 4.2E-04 4.4E-03 3.4E-04 6.8E-05 4.4E-06	Toxicity Values Inhalation Unit Risk Factor (mg/kg-day)-1 NA 5.5E-02 NA NA NA 2.5E-06 NA	Inhalation Reference Concentration (mg/kg-day) 3.1E+01 3.0E-02 3.0E+00 5.0E+00	8,760	VCC Estimated In Cancinogenic Risk NA 7.6E-10 NA NA NA 5.5E-15 NA	Noncancinogenic Risk 1.0E-07 3.2E-05 3.3E-06 1.5E-07
cetone enzene methyl-2-pentanone methyl ethyl ketone thylbenzene thylmethacrylate	Concentration in Trench Air mg/m³ 1.4E-03 4.2E-04 4.4E-03 3.4E-04 6.8E-05 4.4E-06 1.9E-05	Toxicity Values Inhalation Unit Risk Factor (mg/kg-day)-1 NA 5.5E-02 NA NA 2.5E-06 NA NA	Inhalation Reference Concentration (mg/kg-day) 3.1E+01 3.0E+02 3.0E+00 5.0E+00 1.0E+00 7.0E-01 NA	8,760	VCC Estimated In Cancinogenic Risk NA 7.6E-10 NA NA NA 5.5E-15	1.0E-07 3.2E-05 3.3E-06 1.5E-07 1.5E-07
cetone enzene -methyl-2-pentanone nethyl ethyl ketone thylbenzene thylmethacrylate obutyl alcohol	Concentration in Trench Air mg/m³ 1.4E-03 4.2E-04 4.4E-03 3.4E-04 6.8E-05 4.4E-06 1.9E-05 5.1E-05	Toxicity Values Inhalation Unit Risk Factor (mg/kg-day)-1 NA 5.5E-02 NA NA 2.5E-06 NA NA 2.0E-06	Inhalation Reference Concentration (mg/kg-day) 3.1E+01 3.0E+02 3.0E+00 5.0E+00 1.0E+00 7.0E-01 NA NA	8,760	VCC Estimated In Cancinogenic Risk NA 7.6E-10 NA NA NA 5.5E-15 NA	1.0E-07 3.2E-05 3.3E-06 1.5E-07 1.5E-07 1.4E-08
Constituent cetone enzene -methyl-2-pentanone nethyl ethyl ketone thylbenzene thylmethacrylate sobutyl alcohol richloroethene oluene	Concentration in Trench Air mg/m³ 1.4E-03 4.2E-04 4.4E-03 3.4E-04 6.8E-05 4.4E-06 1.9E-05	Toxicity Values Inhalation Unit Risk Factor (mg/kg-day)-1 NA 5.5E-02 NA NA 2.5E-06 NA NA	Inhalation Reference Concentration (mg/kg-day) 3.1E+01 3.0E+02 3.0E+00 5.0E+00 1.0E+00 7.0E-01 NA	8,760	VCC Estimated In Cancinogenic Risk NA 7.6E-10 NA NA S.5E-15 NA NA	1.0E-07 3.2E-05 3.3E-06 1.5E-07 1.5E-07 1.4E-08 NA

Estimated Cancer and Non-Cancer Risks Associated with Inhalation Exposure of VOCs in Trench Air migrating from Off-site Perched Ground Water On-Site Construction/Utility Worker

Exposure Route	Parameter Code	Parameter Definition	Units	Values for Adult Exposure	Rationale/ Reference	Intake Equation/ Model Name
Inhalation	CA	Chemical Concentration in Trench Air	mg/m³		Modeled concentration in Trench Air	Exposure Concentration (EC) (mg/m ³
·.	. ET	Exposure Time - Outdoor	hr/day	1	Professional Judgment — assumes 1 hr of workday in trench	(CA x ET x EF x ED)/AT
	EF ED	Exposure Frequency - Outdoor Exposure Duration	days/yr yr	20 1	Professional Judgment Professional Judgment assumes 1 year construction duration	
	AT _c AT _{nc}	Averaging Time for Carcinogens Averaging Time for Noncarcinogens	hours hours	613,200 . 8,760	USEPA 2009 USEPA 2009	·
	<u> </u>					Cs in Trench Air
		Toxicity Values			Estimated Ir	halation Exposure Risks
	Concentration in Trench Air	Inhalation Unit Risk Factor	Inhalation Reference Concentration		Cancinogenic Risk	Noncancinogenic Risk
Constituent	mg/m³	(mg/kg-day)-1	(mg/kg-day)	•		
cetone	1.6E-04	NA NA	3.1E+01		NA	1.2E-08

		Toxicity Values			nalation Exposure Risks
	Concentration in Trench Air	Inhalation Unit Risk Factor	Inhalation Reference Concentration	Cancinogenic Risk	Noncancinogenic Risk
Constituent	mg/m³	(mg/kg-day)-1	(mg/kg-day)		
acetone	1.6E-04	· NA	3.1E+01	NA	1,2E-08
4-methyl-2-pentanone	2.8E-05	NA .	3.0E+00	NA	. 2.2E-08
methyl ethyl ketone	4.6E-06	. NA	5.0E+00	NA	2.1E-09